

Manhattan 2 Active Window Team Thermally Turning Windows Into Walls

Final Presentation

Brigid Hayes, Michael Nye, Eddie Ondrejech, Brandon Price

Team Introduction

Brigid Hayes Mechanical Engineering

Michael Nye Electrical Engineering

Eddie Ondrejech

Mechanical Engineering

Brandon Price Electrical Engineering

Faculty Advisors: John Schrock (schrock.28@osu.edu), Russell Marzette (marzette.1@osu.edu)

THE OHIO STATE UNIVERSITY

Agenda

- Problem Definition
- Project Motivation
- Preliminary Design
- Design Selection
- Prototype Construction
- Results & Lessons Learned
- Next Steps -or- Recommendations

Project Definition

Problem Definition

On average, buildings in America lose 25% of energy through windows which is causing typical household owners and renters to pay more in heating and cooling every year.

Project Motivation

- **10%** of total U.S. energy consumption is dedicated to heating and cooling homes
- Average household leads to 17,320 lbs of CO₂
- Installing storm windows can reduce energy lost through windows by 25-50%

Preliminary Mechanical Designs

- Car Window
- Trifold
- Lead Screw
- Venetian
- Counter Weights
- Belt Drive
- Linear Induction Motor
- Garage Door Style Linkages
- Servo + Actuators
- Piston
- Chain + Magnet

Mechanical Concept Screening

Categories of Selection Criteria

- 1. Affordable
- 2. Energy Efficient
- 3. Ability to be Concealed
- 4. Serviceable
- 5. Usability
- 6. Standard for Installation

Concept	Score
Car Window	7
Trifold	9
Lead Screw	13
Venetian	5
Counter Weights	7
Belt Drive	3
Linear Induction Motor	1
Garage Door Style Linkages	3
Servos + Actuators	5
Piston	5
Chain + Magnet	7

Threshing Results: Ranking Concepts

Part Identification:

Identifier	Item	Quantity
1	Exterior Sill Plate	2
2	King Stud	2
3	Top-Bottom Boards	3
4	Cripples	7
5	Header	2
6	Jack Stud	7
7	Rough Opening	1

THE OHIO STATE UNIVERSITY

Part Identification 2:

Identifier	Item	Quantity
1	Window	1
2	Top Left Box Leg	1
3	Top Right Box Leg	1
4	Window Casing	1
5	Lead Screw	1
6	Back Box Leg	1
7	Ribbon Connector	1
8	Electrical Box	1
9	Ball Nut	1
10	Cover	1
11	Bottom Right Box Leg	1
12	Bottom Left Box Leg	1
13	Cover Gasket	2
14	Front Box Leg	1
15	Sill Plate	2
16	Jamb	2
17	Box Casing	1
18	Added Supports	5
19	L Bracket	2

Construction Steps:

- 1. Construction of Main Wall
- 2. Construction of Casing and Supports
- 3. Construction of Box, Leveled
- 4. Construction of Window Cover Module, fit to Box
- 5. Integration of Sub Assemblies and Electrical Box

Construction Steps Wall Frame:

Construction Steps Rough Opening:

Construction Steps Rough Opening-Casing:

Construction Steps Window:

Construction Steps Cover:

Construction Steps Track:

Construction Steps Full:

THE OHIO STATE UNIVERSITY

Electrical System

- 1.) 48VDC Input Building Power
- 2.) Power Converters to convert the building power to usable 24V and9V outputs for the motor and microprocessor
- 3.) Motor Control circuitry to control the movement of the thermal cover

Prototype Input Building Power

 Two 19.2V Li-Ion Batteries are connected in series to produce a voltage of 38.4V to use as an input voltage for our prototype

THE OHIO STATE UNIVERSITY

24V Power Converter

Input Voltage: 30VDC

- Will work for input voltages up to 60VDC
- Will work for our 38.4V input from the batteries

Output Voltage: 24VDC

Motor Control

Manual Control

- 3-position toggle switch for manual deployment, retraction, or automation of the thermal cover

Automation

- Indoor and outdoor temperature sensors to determine when the thermal cover should be deployed or retracted

Prototype Electronics

Inside Module Electronics

- Arduino, Motor Driver, and Motor are used to move the thermal cover

Outside Module Electronics

- Temperature Sensors and Toggle Switch are used to determine when the cover should move
- Input Power comes in and is sent through ribbon cable

Inside Module Electronics Temperature

Sensors and

Inside Module Electronics

- Power Converter on the bottom of box
- Ribbon cable connection on top of Arduino
- Motor Driver connections on breadboard
- Motor wires fed through wooden box

Side View of the Electrical Box inside the module

Top View with Ribbon Cable and USB-B Connected 25

Outside Module Electronics

- Ribbon Cable connections covered with electrical tape to hold connections in place
- Input Power connected through the red and black alligator clips
- Indoor and outdoor temperature sensors on the left and right
- Indoor Toggle Switch on the left

Side View of the Electronics outside the module

Prototype Electrical System

Start-up Routine

Infinite Loop

Prototype Construction: Materials & Cost

Components	Cost
Lumber, Insulation, & Aluminum	\$195.42
Window	\$227.30
Mechanism & Fasteners	\$129.25
Track & Sealing	\$60.79
Electronics	\$288.57
Total	\$901.33

Prototype Construction: Obstacles

- Measurement Error
 - Recutting
 - Reassembly
- Glue Delays
- Managing Constructing Time with Zoom Communications
- Teammate COVID exposures

Demo: Deployment from Manual Switch

Demo: Retraction from Manual Switch

Demo: Deployment From Temperature Sensors

Prototype Future Improvements

Improve sliding/sealing abilities

- Increases thermal insulation

Prepare a more mobile prototype

- Current prototype is large and needs to be taken apart to move

Improve prototype presentation

- Add drywall, more insulation, moulding

Prototype Future Improvements

Step-down converter for the controller

- Able to power the controller from the 48V input

Op amp current feedback

- Sense the current drawn by the motor to efficiently stop motion

XMC4200 controller and CAN bus wired connections

- Ability to connect multiple Active Windows to the same network

Wireless manual control

- Ability to control the Active Window through a phone app

PCB layout for inside electronics

Design a PCB layout for the controller, motor driver, and step-down converters

Final Product Comments:

Device Movement

- 102 seconds to close
- Cover fully deploys and retracts into the wall
- <u>Insulation Properties</u>: The cover can insulate the window when deployed and can do so automatically
- <u>Ease of Construction</u>: With mass production of a standard system, the construction of the casing and cover can be streamlined easily
- <u>Ease of Installation:</u> Installation of the module is very easy, assuming the proper tools are available. With further prototype iterations, this will become even easier.
- <u>Standardization</u>: All of the materials used are common and available.
 With mass production, this will be an easy standard

