Critical Design Review

The Mann 2 - Smart Vent Team

Project and Team

• Smart Vent Team

Project

- Purpose of the Project
 - Reduce carbon emissions from the current HAVC of residential and commercial buildings.
 - Develop a standardized inline fan/damper system:
 - I. Accurately regulate temperature in each room;
 - II. Move air between rooms.

Customer's Requirements

	Standardize the internal mounting backets	
Fans	Standardize the external duct support	
	Maximize airflow through the duct when existing HVAC is in use	
Dampers	Maximize air flow when open	
	Standardize the internal mounting backets	
Communication System	Compatible with the Manhattan 2's BuildingBus system	
	No exposed wires in the duct	
Installation and Maintenance	Compatible with current HVAC systems	
	Easy access to location through vent opening	
	Long life cycle	
	Low vibration	

Engineering Specifications

	Target	Threshold
Air flow reduction through the fan system	2 %	10 %
Noise of the fan	25 dB	40 dB
The complete damper system shall not obstruct the air flow when fully open	10 %	20 %

Engineering Specifications

	Target	Threshold
System load requirements	15 lbs	20 lbs
The percent reduction of air flow through system shall be low.	5 %	20 %

Pivoting Fan

Pivoting fan progress at PDR

Current pivoting fan progress

Duct and Bracket

Custom Duct with Bump Out

Mounting Bracket

Mounting Options

Metal bracket (highlighted in blue)

2 x 4 bracing

Pivoting Mechanism

Locking Mechanism

Airflow through the Bump Out duct

Maximize the amount of airflow through the duct when fan is open

Target Value: 2% Reduction Threshold: 10% Reduction

Area of the Duct: 104.03 in^2 Area of the Fan: 6.01 in^2

Percent Reduction: 5.77%

Noise of the Fan

The location of the fan is determined from the ease of assembly and noise

Target Value: 25 dB Threshold: 40 dB

Current in-line fans operate between 33 dB and 40 dB

Noise should not be a significant factor in determine the location of the fan

Sound intensity level B = (dB)	Intensity I = (W/m2)	Example/effect
0	10 ⁻¹²	Threshold of hearing at 1000 Hz
10	10 ⁻¹¹	Rustle of leaves
20	10- ¹⁰	Whisper at 1-m distance
30	10 ⁻⁹	Quiet home
40	10 ⁻⁸	Average home
50	10 ⁻⁷	Average office, soft music
60	10 ⁻⁶	Normal conversation
70	10 ⁻⁵	Noisy office, busy traffic
80	10 ⁻⁴	Loud radio, classroom lecture
90	10 ⁻³	Inside a heavy truck; damage from prolonged exposure
100	10 ⁻²	Noisy factory, siren at 30 m; damage from 8 h per day exposure

Self-Enclosed Damper Changes

Damper progress at PDR

Current Damper Progress

Self-Enclosed Damper Mounting Bracket

Self-Enclosed Damper Frame

Front view of damper system

Damper Frame

Airflow Through The Damper

Maximize amount of airflow through the duct when damper is open

Target Value: 10% Reduction Threshold: 20% Reduction

Area of the Duct: 96.04 in² Area of the Damper: 13.23 in²

Percent Reduction: 13.78%

Design Overview of the System

System Air flow Requirements

Most common Residential/Commercial buildings have a SEER rating between 14-20.

Newer System can have a rating from 20-24

 $SEER = \frac{Cooling Output During Summer}{Energy Used During Summer}$

Target: 16 Threshold: 14 Actual: 15.4

UtahStateUniversity

System Load Requirements

Stress Strain Curve of Steel 1045 and Aluminum 6061 in tension

Target: 15 lbs. Threshold : 30 lbs. Damper Assembly: 14.4 lbs. Fan Assembly: 14.91 lbs.

Budget

ltem No.	Part Name	Cost	Quantity	Total
1	Bearings	\$13.92	2	\$27.84
2	12 in. x 8 in. x 4 ft. Half Section Rectangular Duct	\$17.33	2	\$37.66
3	12 in. x 8 in. Ceiling/Sidewall Vent Register Cover	\$20.85	1	\$20.85
4	PLA	\$20.59	1	\$20.59
5	Misc Hardware(Screws, sheet metal, duct tape, etc.)	\$40	N/A	\$40
			Total	\$141.94

Schedule

Questions

