

www.Manhattan2.org BuildingBus Development Guide 1

The BuildingBus Development Guide
By Glenn Weinreb, CTO, Manhattan 2, Printed Jan 30, 2021
Overview

BuildingBus is a hardware and software system that networks together devices in a
building and this document is a guide to developing BuildingBus software. The topics
discussed are in no particular order and it is therefore recommended that one use the
Navigation System to locate areas of interest. For an overview of this project, please refer
to the Manhattan 2 Smart Building Development Initiative.

Operating System for Device in a Building

There is an operating system in Windows Computers called "Windows OS" and an
operating system in Google phones called "Android". Yet no standard operating system
exist for devices in a building. We aim to change this, with free and open C/C++
BuildingBus software.

This software is installed on all devices in the BuildingBus system, which means each
device knows what is happening on other devices. Also, this means we have an agreed
upon method by which devices interact, which facilitates local intelligence (smarter
devices) and fault tolerance (each device is less dependent on external resources).

Xmc4200 Platform2Go Development Board

The BuildingBus
Development Initiative
uses an Xmc4200
Platform2Go
development board for
most projects. This
provides an Arduino
shield socket, a Mikroe
Click socket, and a
powerful Xmc4200
microcontroller.

The Xmc4200 is one $3
IC that provides 256KB
of flash memory, 40KB

http://www.ma2life.org/doc/research/ma2/Active_Window_Development_Initiative_Ma2.pdf
https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc_plt2go_xmc4200/

www.Manhattan2.org BuildingBus Development Guide 2

of RAM memory, two 1Ms/sec 12bit A/D converters, 8 analog input
channels, two CANbus interfaces, several SPI interfaces, many
counter/timers, and about 30 digital I/O pins. It can directly control a DC-
to-DC converter, LED dimmable current source, and motor controller; for
example. For details, please see its datasheet and product page.

See Also

• Smart Building R&D Initiative
• Rollable Solar R&D Initiative
• Fan and Damper R&D Initiative
• BuildingBus Development Guide. For free and open source code, click here.
• IoT Reference Guide

https://www.infineon.com/dgdl/Infineon-XMC4100_XMC4200_DS-DS-v01_04-EN.pdf?fileId=5546d462696dbf120169817056f938ff
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc4000-industrial-microcontroller-arm-cortex-m4/xmc4200-f64k256-ba/
http://www.ma2life.org/doc/research/ma2/Active_Window_Development_Initiative_Ma2.pdf
http://www.ma2life.org/doc/research/ma2/BiPV_and_LiPV_Development_Initiative_Ma2.pdf
http://www.ma2life.org/doc/research/ma2/FanAndDamper_Standards_Development_Initiative.pdf
http://www.ma2life.org/doc/research/ma2/BuildingBus_Development_Guide.pdf
http://www.ma2life.org/doc/research/ma2/Active_Window_Development_Initiative_Ma2.pdf
http://www.ma2life.org/doc/plan/Ma2_IOT_Development_Plan.pdf

www.Manhattan2.org BuildingBus Development Guide 3

Chapter 1) The BuildingBus System

Network Hierarchy

The BuildingBus network
connects together multiple
devices via CANbus. This
supports sending 12byte (8+4)
message packets along a wire.

The system is hierarchical in the
sense that a Master Controller
("AMC") manages multiple
Network Controllers, each
Network Controller manages
multiple Devices, and each
Device optionally manages
multiple Subnetwork Devices,
as illustrated to the right.

An example network is a Network Controller that routes its data wire along an 110VAC
power wire from the fuse box in the basement to multiple devices in the living room. One
device might be a manager for 10 light sockets in the living room ceiling, each of which is a
subnetwork device. Each physical window might have several motors (e.g. curtains,
thermal cover), each of which are subnetwork devices, with one window controller device
managing the subnetwork.

Reliability, Revenue and Relevance

Breaking this up into many different networks means that if one wire breaks, the entire
system is not affected. Wired (not wireless) communication typically results in reliability
better than >99.999% of the time being operational. Wireless is more like 90% to 99%, in
many cases. Reliability is a thing, and people who design and build buildings need it in
order to facilitate happy customers. If we want to be relevant; we need to provide good
reliability, fault tolerance, and quality.

Network Address

Each device in the system is identified with a three number address (network #, device #,
subnetwork #). Each device internally contains three to eight software ports, each of

www.Manhattan2.org BuildingBus Development Guide 4

which are a C++ class. When one talks to a device, they specify the portIndex they are
talking to (0...7).

This is illustrated in the above picture, which is referred to as one "BuildingBus System".
The master controller connects to the outside world via IP (e.g. Ethernet). When one goes
out IP, they are "outside" the system. One can have multiple BuildingBus Systems in one
building, connected together via IP.

Time and Design

A typical internet connection moves continuous data at 10M to 100M bits-per-second
with a 30mSec to 300mSec delay between transmission and reception, with each data
packet being thousands of bytes in size.

BuildingBus is different in many ways. Our delay between transmission and reception is
more like 10uSec to 5mSec (due to multiple bridges), our packet size is 12bytes, and
typical bit rates are 100K bits-per-second. BuildingBus is not designed to move computer
data, audio or video. It is designed to implement building automation and control, reliably,
and at low cost. Reliability in the 99.999% operational range entails wire (not wireless or
powerline communication). Wire entails CANbus, since that is the wired multi-device
communication system built into low cost microcontroller IC's. CANbus entails 12byte
data packets, since that is CANbus. Building 10m to 50m physical distances entails ~100K
bits-per-second, since that is what you get when you have tree topology wiring of that size
(not daisy-chain, no termination resistors, ~60pF/m x ~330Ω source impedance x ~50m =
~1µSec).

The 12byte data packets are sufficient since automation and control often entails reading
a sensor or setting a control system, which can be done with several bytes. BuildingBus
sometimes move thousands of bytes at a time, yet that is often done with immutable data
that never changes, and therefore only needs to be done once. If 1K bytes of immutable
data characterizes each device, and you have 300 devices, then a 300KB device library can
be copied to servers, computers, tablets and smartphones. This can help them fully
understand the system in great detail, without passing data on the network. Maintaining
device libraries is part of the BuildingBus system.

www.Manhattan2.org BuildingBus Development Guide 5

Chapter 2) Getting Started With the BuildingBus Source Code

Downloading BB

To download BuildingBus source code and projects, please see the following URL. We
show a picture instead of a URL since security software sometimes resists zip. One needs
to type this URL into their browser to download.

This file contains the BuildingBus framework
source code (folder BB_Source_Code), the
DavePrj_BB project (folder DavePrj_BB), Dave
Workspace (folder DavePrj_BB_Workspace), and a
Windows OS project (folder WindowsOS_Project).
The Windows project creates multiple devices in a
system; whereas the DAVE project creates one
device that runs on one Xmc4200 Platform2Go
hardware board.

To view in Visual Studio, open project file:
 BB\WindowsOS_Project\BuildingBus_Development\BuildingBus_Development.sln

To view in Dave IDE, open workspace folder:
 BB\DavePrj_BB\DavePrj_BB_Workspace\

It is better to open the Dave workspace than import the DavePrj_BB project file, since the
workspace contains Debug Configuration files that relate to the project.

One Project Can Create Different Devices

One can set compiler switches as needed to create the following devices with the
DavePrj_BB project: window thermal cover controller, window curtain motor controller,
window rolled blind motor controller, window venetian blind motor controller, window
controller, network controller, automation master controlled, LED light socket subnetwork
device, LED light device controller, window wall light switch/dimmer control, hvac variable
speed or on/off controller, hvac duct damper controller, and radiator valve controller. To
view compiler switches that control the project, see file "MY_Project_Compiler_Switches.h".

The DavePrj_BB Project

www.Manhattan2.org BuildingBus Development Guide 6

The DavePrj_BB project contains the BuildingBus framework
and supports debugging using free Infineon DAVE tools. This
project creates one device, as determined by the
BB_BUILD_STRATEGY compiler symbol. For example, set it to
...Window_Motor... to build a Window Motor device; set it to
…Light_Socket… to build a light socket device; or set it to
…SolarArrayElement to build a power converter that
attaches to a solar panel.

This project can read from five analog input channels, write to one digital output bit
attached to an LED, and write to one digital output bit attached to an oscilloscope to
measure timing. This project uses counter/timers to create a 64bit 128uSec hardware
counter that establishes time since midnight, Jan 1, 2020. Also, it includes a hardware
interrupt system that generates interrupts every 10mSec. This drives one master thread
that executes tasks at a multiple of this rate. We keep it simple, with one thread, to make
it easier for programmers.

Compiler Switches

Compiler switches in file MY_Project_Compiler_Switches.h determine what is built and
how it is built. For example, switches in this file can turn simulation on or off, determine
how many devices are created, and determine which devices are created.

Getting Started with the DavePrj_BB Project

To get started install the Infineon DAVE software on your computer, download the above
zip file, open the Workspace (BB\DavePrj_BB\DavePrj_BB_Workspace\), compile the
DavePrj_BB project, run it under the DAVE debugger, and see if you can print to the
console window. The TestSystemA class might be running, in which case, it will send test
messages to a test device.

BuildingBus_Development Visual Studio Project

The BB zip file also includes the BuildingBus_Development
Visual Studio project, which creates multiple devices and
tests them in a system. It tests message passing, moving
large blocks of data between devices ("streams"), building
device libraries, and the coordination of devices in a system.

Windows Application Program

https://en.wikipedia.org/wiki/DAvE_(Infineon)

www.Manhattan2.org BuildingBus Development Guide 7

Files BB_Windows_OS_Application.cpp/.h create a Windows Application program that
provides a console window for printing. All code that
is specific to Microsoft Windows is contained in these
two files; and they are compiled out when building
one device under Infineon DAVE software.

Simulate 20 Devices in a System

The visual studio project creates 20 devices and tests them in a system.
To see the code that creates these devices, search ":Create_Devices"
from within the visual studio project. 95% of the BuildingBus code was
developed using this environment. The simulation files are compiled out
when building one device under DAVE.

BB and MY

File names with a "BB_" prefix are maintained by "BuildingBus Engineers", which are
people that develop the BuildingBus system. File names with a "MY_" prefix, are
maintained by Industry Engineers, who are responsible for designed and manufacturing
products. Industry engineers do not change the BB files. They use them and rely on them
to maintain the system.

BuildingBus Strategy

BB files, in effect, define the BuildingBus software standard. Your traditional networking
standard does not include software, and therefore needs to maintain a degree of
simplicity in order to gain support from participants, who need to write code that
implements the standard. Alternatively, in the case of BuildingBus, the software that
manages the device is supplied, and therefore can be significantly more complicated than
your traditional networking protocol. To encourage adoption, BuildingBus is free and open
software -- anyone can copy and modify at no cost. Normally, business do not develop
free and open since they want to make money. However, in our case, we write code to
make buildings smarter, to reduce CO2 emissions.

Student Contribution

BuildingBus is complicated and can therefore be overwhelming to students. Subsequently,
it is suggested that each focus on one somewhat small area and develop C or C++ code, or
electrical schematics, that can be used by others. For example, one might create a device
that controls a 10W LED light bulb, focusing on the hardware interface to the bulb, while
BuildingBus manages the interface to other devices on the network. In another example,

www.Manhattan2.org BuildingBus Development Guide 8

one might write code that scans through device libraries and identifies devices that satisfy
a specific filter requirement. This could then be folded into the BuildingBus framework, to
be used by any programmer working with any device.

www.Manhattan2.org BuildingBus Development Guide 9

Chapter 3) The DavePrj_BB Project

Overview

The DavePrj_BB Project compiles under the Infineon DAVE development environment and
supports the downloading and debugging of code on an Xmc4200 Platform2Go Board.

One Thread Takes Care of Most Business

The system utilizes one thread. This makes it easier for programmers since one does not
need to be concerned with memory contention or blocking.

A hardware interrupt occurs once every 10mSec and calls EXECUTE_MasterIdleChore (),
which periodically calls other routines.

The following are set up to execute once every 100mSec: Stream Manager, State
Machine, and Device Manager. Also, processing of CANbus messages occurs once every
10mSec via EXECUTE_Foreground_Processes_Multiple_INCOMING_CanBus_Msgs ().

For code that manages counters, timers, and processing; see file
BB_EntireDevice_Processing.cpp.

XMC Processor Code

All code that interacts with the XMC microcontroller hardware
is contained in several files, pictured to the right. These files are
compiled out when working with Windows Visual Studio.

• BB_Xmc_Counter_Timer.c sets up and maintains
hardware timers and counters.

• BB_Xmc_ADC.cpp creates a class that manages the
processor's A/D converter and measures voltages at
processor analog input pins.

• BB_Xmc_Cpu_Digital_IO.c manages digital I/O bits.
• BB_Xmc_CANbus… manages the CANbus interface.

The DAVE Apps do much of the work; subsequently, little programmer code interacts with
the XMC microcontroller.

BB_EntireDevice C++ Class

https://en.wikipedia.org/wiki/DAvE_(Infineon)

www.Manhattan2.org BuildingBus Development Guide 10

In software, each device is one instance of the
BB_EntireDevice class. This class creates other
classes, as needed, and maintains pointers to them.
For example, BB_EntireDevice creates an instance of
the BB_LibraryManager class, which manages
libraries of other devices. See file BB_EntireDevice.h
for a description of this class.

Each product creates a child class of the BB_EntireDevice class within a "MY" file. As noted
previously, BB files do not change from device to device, yet MY files contains information
unique to one's device. In other words, the BB_EntireDevice class source code is the same
in all devices in the system (except for updates to code, which is beyond the scope of this
discussion). For an example of a child class that creates a motor controller for a physical
wall window, see file MY_Dev555_EntireDevice.cpp.

In summary, MY files tend to contain child classes to base classes that were defined in BB
files, children add to parents, children define unique attributes, and parents do ~90% of
the work.

Global Pointer to Device (gDevP)

When compiling one device under DAVE, a pointer to the created BB_EntireDevice is
loaded into global variable gDevP. Subsequently, any code can access any
BB_EntireDevice method, or class variable, via gDevP. For details, search the DavePrj_BB
project for "gDevP".

A/D Analog Measurement

Class BB_XMC_Hardware_ADC_Measurement_System maintains an interface to the XMC
microcontroller internal A/D converter and analog input channels. There are only two
XMC library C subroutines that talk to the A/D hardware:
ADC_MEASUREMENT_StartConversion () starts conversions and
ADC_MEASUREMENT_GetResult () returns the result.

Interrupt service routine ADC_Complete_ISR_HigherPriority () is called when the A/D
completes. This sets a global flag, while the main thread sits in a while () loop waiting for
this flag to be set. This is all implemented with Measure_One_ADC_Channel (); therefore
one does not need to deal w/ the XMC A/D support routines, and instead can work with
this higher level routine that takes two parameters: channelIndex (selects one of the

www.Manhattan2.org BuildingBus Development Guide 11

analog input channels) and uSec_integrationTime (sets how many samples are average
before the average is returned).

Integration is powerful. If a signal is noisy and returns codes that bounce up and down +-
10 samples, and then average 100 samples, they will reduce noise to +-1.

For a routine that test the A/D measurement system, see
Test_XMC_ADC_Measurement_NOISE_VS_INTEGRATION ().

The system measures the time it takes to read one a/d sample and then uses this to
calculate the number of samples to average, given a requested integration time (i.e. # of
microseconds). To see this measurement, search "weAreMeasuringAdcConversionTime =
true".

If your device has sensors, it will managed them with an instance of the MeasurementSys
class. Code within the device will then read those sensors via this class's
Measure_One_Analog_Input_Channel () method, which in turn calls lower level XMC
Measure_One_ADC_Channel ().

Debugging via LogErrorCode ()

When we first incur an error, we call
LogErrorCode (). This prints an error
message to the debugging console
window, if it is set up. Yet more
importantly, we place a break point
inside LogErrorCode (), and use debugging features to resolve the bug before continuing
(e.g. via stack crawl, view variables, etc).

As of 2/1/2021, there are no known bugs in the BuildingBus framework software. This is in
part due to this system of chasing down the source of a problem before continuing with
coding. In other words, we never continue execution after stopping inside LogErrorCode ().

Code is constantly looking for problems, and calls LogErrorCode when found.

Simulations entail passing hundreds of messages between dozens of devices, and when an
error is incurred, LogErrorCode is called.

When a subroutine hits an error, it returns an error code, which is seen by the calling
function, which in turn returns an error code in a nested fashion. We only place
LogErrorCode () at the lowest level, since we only need to print once to the console

www.Manhattan2.org BuildingBus Development Guide 12

window. Yet more importantly, when an error occurs, we want to debug as close to the
problem as possible, as opposed to far from the cause.

www.Manhattan2.org BuildingBus Development Guide 13

Chapter 4) Simulating Multiple Devices

Overview

The BuildingBus_Development Visual Studio project creates
multiple devices, in software, and tests them in a system.
This does not use microcontroller hardware.

As of Jan 2021, the simulation creates 1 to 20 devices,
depending on the maxNumOfDevices parameter passed to
CreateDevices_CreateWires_ConnectDevicesToWires (). To
see which devices are created and their addresses, view Create_Devices_TOTAL ().

Creating Devices

In BuildingBus terminology, a "device" is one microcontroller IC, in one product, that is
attached to the network. Each device is identified with a network #, device #, and
subnetwork # address. A "BuildingBus System" involves multiple devices connected
together, with a master controller at address 0/0/0. For examples of routines that create
devices, see:

• Dev555_BUILD_AMC_MasterController_0_0_0 () creates a Master Controller (AMC) at
address 0/0/0.

• Create_Devices_WINDOW_THERMAL_COVERS () creates multiple window motor
subnetwork devices, and multiple window controller devices.

• Create_Devices_LIGHTING () creates multiple light sockets (e.g. living room ceiling is
one subnetwork and kitchen ceiling is another).

• Create_Devices_SOLAR_ARRAY () creates multiple solar panel power converters (e.g.
one 300Watt DC-to-DC converter subnetwork device for each 3x5ft solar panel).

Creating CANbus Cables

Create_Wires () creates multiple CANbus cables, and Add_Devices_To_Wires () attaches
devices to those wires, as needed. Later, when a device pushes a message into a cable, it
is copied into the receive FIFO buffer of all devices connected to that cable. Subsequently,
multiple devices can pass messages to each other in a network like environment, without
the actual hardware.

Simulating Multiple Devices

Several different simulations are set up with functions in file MY_Simulation_1.cpp:

www.Manhattan2.org BuildingBus Development Guide 14

• RUN_Simulation_ToTest_SIMPLE_MSG_PASSING (): Simulates passing a few simple
messages between devices.

• RUN_Simulation_ToTest_MSG_ROUTING (): Every device passes a message to every
other device, and the system checks to make sure it is received. If you have 20 devices,
then this will test (20-1)*(20-1) = 361 different permutations. The simulation system
assigns a unique ID to each device when the device is created (globalDeviceID). In this
simulation, this value is sent to a 16bit test register within each device
(TestRegister16). After the message is passed, the system checks this test register to
make sure it was set properly, and also looks at test registers in other devices to make
sure they were not inadvertently set.

• RUN_Simulation_ToTest_BROADCAST_TO_ALL_DEVICES (): Messages can be sent to
multiple devices via a system called "broadcast". One type of broadcast involves
sending one message to all devices in the system, which is tested in this simulation.

• RUN_Simulation_ToTest_BROADCAST_TO_SPECIFIC_ZONES (): This is similar to the
above simulation, yet tests another type of broadcast that involves sending one
message to a subset of devices within the entire system. For details on how this works,
search the project for "Devices That Receive Broadcast".

• RUN_Simulation_ToTest_READ_1x_DATA_CAPSULE_VIA_DATA_STREAM (): This
simulation tests the reading of an entire data capsule (multiple fields) via StreamIO (i.e.
multiple messages transfer one large binary block).

• RUN_Simulation_TEST_DeviceCtlr_Manager_Discovery_Process (): When devices first
boot up, they build libraries that contain information about other devices. This involves
state machines and communication between devices, as described in the below Device
Library discussion.

Simulation Engine

The actual simulation involves giving processor time to each device to digest incoming
message packets, and moving messages between devices. This is implemented with
Execute_Simulation_Engine (), which simulates a fixed number of OS "ticks", where each
tick is a call to a device's 10mSec Master interrupt service routine (ISR). For example, if
one runs 10K ticks, they would simulate 100 seconds of activity (10mSec * 10K = 100). The
simulation engine iterates through all devices in the system and calls their 10mSec ISR to
simulate one tick for the entire system.

Running a Simulation

www.Manhattan2.org BuildingBus Development Guide 15

To run a specific simulation, search for "void MY_Project_Run_Simulations", select a
simulation, and set compiler switches as needed.

www.Manhattan2.org BuildingBus Development Guide 16

Chapter 5) Data Capsules and Fields

Overview

Each device maintains 3 to 8 software ports (C++ classes that handle messages), each port
maintains 0 to 3 different sets of fields, and each set of fields consists of 0 to 127 fields. A
field is a single number, or an array, or a string. Each field element is of type floating point
or integer. Each field element is 1, 2, 4, or 8 bytes in size. An example field might be the
DeviceType, which indicates the type of device (e.g. window motor). Each set of fields is
called a "data capsule". We call this a "capsule" since it is stored in one continuous binary
block that is designed to be portable. We call this "portable" since it is designed to be
moved throughout the network. Any device can ask any other device for a copy of one or
more capsules. Each capsule is typically 50 to 500 bytes long. One can also request a set of
capsules packed into one binary block called a "BuildingBus Library".

ImmutableData, ImmutableStrings, and PortRegisters

Each port maintains up to 3 different capsules. One is called "ImmutableData", which
consists of numbers that never change (e.g. device type). Another is called
"ImmutableStrings", which are strings that never change (e.g. vender name). And the third
is called "PortRegisters", which are numbers that do change (e.g. window motor position,
temperature sensor °C value).

Internal Structure

Capsules start with a header struct (GENERIC_BbCapsule), which is followed by
information that describes the contents of the capsule, which is followed by field data. A
struct that defines the entire capsule sometimes does not exist. In those cases, one reads
from fields, and writes to fields, via subroutines that use capsule internal information to
determine field type, and position, within the capsule.

Reading and Writing Fields within a Portable Capsule

For an example routine that reads a field, see Set_INT64_Value_WithinCapsule (). For an
example of a routine that writes to a field, see Get_FLT32_Value_FromCapsule (). For
routines that return information about a field, see
Get_ExtendedInfo_OneField_BbCapsule () and Get_Info_OneField_BbCapsule (). These C
routines operate on capsules which may have been created by other devices.
Subsequently, they do not have access to C struct definitions that tell them about the
capsule. For C routines that work with portable data in capsules, see file
BB_Capsule_Interface.c.

www.Manhattan2.org BuildingBus Development Guide 17

Capsule Container Class

Each device typically maintains 5 to 10 capsules, and for each, an instances of the
BB_CapsuleContainer wrapper class provides additional methods. For example, method
Get_INT64_Value () reads a field and return its value in an int64 variable; and
Set_INT64_Value () sets a field's value given an int64 variable. For details, search "class
BB_CapsuleContainer ".

Flt32 and Int64 Interface

Some of the read/write field routines are passed 32bit floating point variables, whereas
others work with 64bit integer. If a field internally stores the value 3 in an int8, and you
read it with Get_FLT32_Value (), it will set your flt32 to 3.0, for example. Alternative, if
you read the same byte with Get_INT64_Value (), it will set your int64 variable to 3. This
might seem wasteful, yet the alternative of providing more r/w routines, which is more
wasteful.

Flexibly Sized Signed Integer

When reading/writing fields across the network, the # of bytes used to represent the data
varies depending on the value. For example, if a field internally stores a number in an
int64 variable, and it contains the value 3, then reading this field across the network
results in 1 byte being transferred (since more bytes are not needed to represent a low
value). For details, see CONVERT_FROM_FlexiblySizedSignedInteger_TO_INT64 ().

Iterating Through Ports, Capsules and Fields

For an example of a routine that iterates through all ports, all capsules, and all fields
within one device; see TEST_EveryFieldInEveryCapsule (). This reads each field with both a
C routine that reads the capsule directly; and a C++ container class method. Also, this gets
information on each field, by both the direct C routine and C++ container method.

For examples of routines that locate ports and capsules, that are called from within any
port class (not device class), see GET_AnyPortInThisDevice (), GET_CapsuleContainerP (),
and GET_CapsuleContainerP_FromAnyPortInThisDevice ().

www.Manhattan2.org BuildingBus Development Guide 18

Chapter 6) Port Class

Device Common Port

All devices provide a common interface between the
network and the entire device via an instance of the
BB_DeviceCommon_Class at Port #0 (portIndex = 0 =
PortIndex_0_DeviceCommon). Its ImmutableStrings
contain things like manufacturer name and its
ImmutableData contain fields like ProductType.

BB_DeviceCommon_Class, defined in a BB file (same
in all devices in network), does much of the work,
while the child class in the MY file contains
information unique to the device (e.g. class
MY_Dev555_port_DeviceCommon). Together, these
files manage capsules of fields, and provide function handlers at Port #0.

For information on fields maintained by the ImmutableData, ImmutableStrings, and
PortRegister capsules (3 different sets of fields) within the DeviceCommon port, see file
BB_DeviceCommon_Interface.h.

Measurement System Port

Each device maintains up to 127 sensors via the
BB_MeasurementSys class at port #2 (portIndex = 2
= PortIndex_2_MeasurementSystem). If you are
talking to a device's port #2, you are talking to a child
of this class. And this child maintains three capsules
(i.e. sets) of fields (ImmutableData,
ImmutableStrings, and PortRegisters).

MeasurementSys PortRegister Field #15
(msrFI_Sensor_Measurement_Channel) is the most
interesting, since it is the interface to sensors (e.g. A/D analog input channels). This field is
an array, where each element of the array corresponds to a different sensor. For example, if
you have 5 sensors, your channelIndex would vary from 0 to 4, and would correspond to an
index into this 5 element array. Anyone that reads an element in this array is getting a
pseudo real-time reading of that sensor. When a device reads a sensor on another device, it

www.Manhattan2.org BuildingBus Development Guide 19

reads PortIndex_2_MeasurementSystem (portIndex = 2), BbCapsuleType_PortRegisters
(capsuleType = 2), and msrFI_Sensor_Measurement_Channel (field index).

The MeasurementSys ImmutableData capsule contains fields like sensor type, which tells
us the type of sensor (e.g. temperature). To see a list of different sensor types, search
"enum BB_SensorType ". This capsule also provides things like sensor minimum value,
sensor maximum value, measurement accuracy, and measurement noise. These are
immutable, which means they never change. Subsequently, this information ends up all
over, including one's smartphone. This means your smartphone has access to information
on all sensors in your house, which means it can easily determine how to utilize them
without using the network.

For a list of ImmutableData fields in MeasurementSys Port #2, search "enum
FIELD_INDEX_MeasurementSys_ImmutableData".

The MeasurementSys PortRegisters capsule contains fields that contain values that
change. For a list of these, search "enum FIELD_INDEX_MeasurementSys_PortRegister".
Example fields are sensor value and sensor status.

The BB_MeasurementSys class is identical on all devices (it is a "BB" file); whereas the
child class is specific to a particular device (it is a "MY" file). For an example of MY file code
that implements sensors, see Setup_Hardware_ADC_Measurement_System (), which sets
up A/D channels, and Measure_One_Analog_Input_Channel (), which measures them.

VariableControl Port

Port #1 is the DeviceType handler port, which means it contains a class that implements the
DeviceType. In many cases, we place a VariableControl class here, which manages one or
more output channels. One writes an int16 value to this port to control something. In some
cases, 0 is off and any other value is on. In other cases, the device uses a value between 0
and 32500 to control a variable quantity.

All of the following products utilize variable control: on/off motors, variable speed motors,
0 to 100% position stepper motors, on/off lights, 0 to 100% illumination lights, on/off fans
in ducts, and 0 to 100% open dampers in ducts and at vent openings.

When one device writes to the control output of another device, it writes to
PortIndex_1_DeviceTypeHandler (portIndex = 1), BbCapsuleType_PortRegisters
(capsuleType = 2), and vcorFI_ControlOutput_CommandOutput_int16 (field index).

The Industry Programmer fills in the body of the Update_One_Control_Output_Channel ()
method in order to implement control.

www.Manhattan2.org BuildingBus Development Guide 20

For information on fields used by the capsules within the VariableControl port, see file
BB_Port_VariableControl_Interface.h.

www.Manhattan2.org BuildingBus Development Guide 21

Chapter 7) Transferring Data across the Network

Working with Addresses

Devices are identified in the system with a network #, device #, and subnetwork #
address. Also, a 0…7 portIndex refers to a specific port class within a device. These four
values are packed into a uint16 number and placed into the 29bit identifier transmitted
within CANbus packets. Also, in code, addresses are maintained inside a
BB_AddressIdentifier struct. To load this struct with a 4 number address, one calls
LOAD_AddressIndentifier (). For functions that work with network addresses, see file
BB_EntireDevice_Addressing.cpp.

Broadcast and Groups

One can send a message to a specific device via a network #, device #, and subnetwork #
address; or broadcast one message to all devices in the system; or broadcast one message
to a zone within the system; or broadcast one message to a group of devices. For details,
see "Broadcast and Groups" within this document.

Each Device can Read/Write any Field, in any other Device, within the System

Any device can read (and possibly write) to/from any other field within the system. Each
field is identified with 6 or 7 parameters: network #, device #, subnetwork #, port#,
capsule type (immutable data, immutable string, port register), field number, and index
into an array if field is an array.

File "BB_DeviceCommon_Func_RdWrField.cpp" contains subroutines that read/write
fields in other devices. When a device does this, they are referred to as the "initiator" or
"client", and the contacted device is called the "target" or "server". The server responds to
a R/W field request via method HANDLER__DeviceCommon_RdWrField ().

An example initiator routine is
APPEND_MSG__Read_INT64_AnyField_AnyCapsule_AnyPort (), which returns a 64bit
integer value, independent of a field's internal data type. If a value of 3 is found within a
field, it will respond by transmitting one byte back to the initiator, loaded with 3, and the
caller's int64 will in turn be loaded with the value 3. For details on how values of any size
are transferred using a variable number of bytes, search "FlexiblySizedSignedInteger".

One does not need to be concerned with how the system implements read/write field,
since the code takes care of it. However; if curious, one can see file

http://www.ma2life.org/doc/research/ma2/Active_Window_Development_Initiative_Ma2.pdf

www.Manhattan2.org BuildingBus Development Guide 22

"BB_CANbus_FramePacking.c" for details on how CANbus messages are packed and
unpacked.

Field Index

Enums are used to keep track of which field does what, within each capsule, within each
port. These are referred to as "field index". To view field indices used by the ImmutableData
capsule of the DeviceCommon port, for example, search "typedef enum
FIELD_INDEX_DeviceCommon_ImmutableData".

For enums that define all field indices, search "FIELD INDEX ENUM".

Field indices never change, which makes it possible for one device to r/w fields in any
other device. If one updates their software, they can add a capsule, yet never delete, and
never reorder.

Shown below are several fields within the DeviceCommon ImmutableData capsule, for
example.

www.Manhattan2.org BuildingBus Development Guide 23

Get Stream

Each device can request more than 8bytes from
any other device via the Stream Manager, which
moves large blocks of binary data via multiple
CANbus messages. When one requests a stream,
they specify what they want to receive, which is
one of: one capsule (GetOneDataCapsule),
multiple capsules in a library (OneDevice_MultipleCapsule_Library), information on
multiple devices packed into a library (e.g. array of BB_DeviceSummary structs), multiple
fields (GetMultipleCapsuleFields), or structs w/ important information. For details, search
for "enum BB_StreamType".

To request a stream from another device, one first creates a message requesting the
stream. For details on how to do this, search ":APPEND_MSG__StreamIO".

When a target receives a request for a stream, it processes it via method
HANDLER__Server_Responds_To_StreamIO_Request ().

When the stream is complete, the client receives a callback (i.e. a specified functions is
called).

An instance of class BB_ServerDataStream_Manager manages a set of
BB_ServerDataStream instances, where each of the later maintains one stream on the
target server device. And an instance of class BB_ClientDataStream_Manager manages a
set of BB_ClientDataStream instances, where each of the later maintains one stream on
the client initiator device.

The BB_EntireDevice class creates and maintains a server stream manager, and a client
stream manager.

Streams enable one to move large blocks of data; yet more importantly, they facilitate the
movement of important device information.

Message Builder

www.Manhattan2.org BuildingBus Development Guide 24

Each device uses the Message Builder class (BB_MsgBuilder) to create messages and
move them through the network. This class maintains a queue (i.e. list) of messages. One
begins by resetting the queue via Reset_MsgQueue () and then calls
LOAD_TargetServerAddress_via_AddressIdentifier_uint16 () to specify the target device
address. Then, one calls multiple APPEND_MSG… routines to append messages to the
queue. For example, APPEND_MSG__WriteInt64_DeviceCommon_PortRegister ()
appends a message that writes a value to a field in another device.

After appending messages to the queue, one calls
Push_entire_MsgQueue_into_OutgoingFifo () to flush the queue (i.e. empty it) and move
its contents to an outgoing message FIFO buffer. Later, other code moves messages from
this FIFO buffer out to the CANbus cable.

There are many different types of messages that one can transmit. To see these, search
":APPEND_MSG_" and search "int16 APPEND_MSG". In all cases, one appends messages
to the message queue, and then flushes via Push_entire_MsgQueue_into_OutgoingFifo ().

Message Callbacks

In some cases, one sends a message that later needs attention. For example, one might
send a message that reads a field, where the data is received 10 to 100mSec later. The
code does not sit and wait for the response, since most code only consumes 10 to
100uSec of microcontroller time and does not want to block other activity. Instead, the
code releases the processor after sending the request, and sets up a callback routine that
is called when the data is received.

When one appends the read request to the message queue, they also specify this callback
function. Same with streams. When one ask for a stream (large # of bytes), they specify a
function that is later called when the entire stream is been received.

To see an example of a read field callback, search
"PrepareCallback_ReadInt64_ClassWithCallbackMethod(this", and to see an example of a
stream IO callback, search "PrepareCallback_StreamIO_ClassWithCallbackMethod(this".
The read INT64 callback calls method ReadInt64_CallbackMethod () and the stream IO
callback calls method StreamIO_CallbackMethod ().

Message FIFO

Two FIFO (first in, first out) buffers are attached to each CANbus cable ("node" in XMC
lingo). One FIFO for incoming messages, and one for outgoing messages. The message
builder feeds the outgoing FIFO, and the CANbus receiver feeds the incoming FIFO. A

www.Manhattan2.org BuildingBus Development Guide 25

message processing function pulls messages out of the incoming FIFO every 10mSec and
processes them via EXECUTE_Foreground_Processes_Multiple_INCOMING_CanBus_Msgs (). And a
CANbus transmit function pulls messages out of the outgoing message FIFO and pushes
them out the CANbus cable.

www.Manhattan2.org BuildingBus Development Guide 26

Chapter 8) Device Libraries

Device Summary Libraries

The DeviceSummary struct (BB_DeviceSummary_Timestamp) is
~90bytes long and contains approximately 40 parameters
that summarize one device. These are packed into an array
and maintained in a device library, which holds information
on multiple devices, one DeviceSummary struct per device.

Each Network Device (brown in illustration) and Network
Controller (orange) maintain a library of device summaries one level below. For example, a
Network Device with five subnetwork Devices below it will maintain a library of five
DeviceSummary structs, one per below device. All devices that have devices below them in
the hierarchy, illustrated above, maintain these "1xLevelDown" libraries. For details, search
"deviceSummary_1xLevelDown_LibraryP".

Each Network Controller (orange) maintains a library of device summaries that contains all
devices one and two levels below (deviceSummary_Level234_LibraryP). This includes
Devices (brown) and Subnetwork devices (blue).

Each Master Controller (AMC) maintains a library of
device summaries of all devices in the system
(deviceSummary_Level_1234_LibraryP). This includes all
Network Controllers, all Devices, and all Subnetwork
devices.

Pointers to these libraries are members of the
BB_EntireDevice class, therefore devices can easily access
them.

Libraries are stored in device flash memory; therefore, a device does not need to rebuild
from scratch each time it boots up. Instead, devices update existing libraries when they
boot, and from time to time.

Libraries are maintained by the BB_LibraryManager class. A pointer to an instance of this
class is a member of the BB_EntireDevice class; and is therefore easily accessible
(libraryManagerP).

Libraries help devices understand their neighborhood.

www.Manhattan2.org BuildingBus Development Guide 27

Building Libraries from Scratch

When a device first boots up, it builds and/or updates its
libraries. This might take 1 to 100 seconds, depending on
the situation. Devices gather information using a state
machine that executes one state every 100mSec. Each
state performs a different function. For example one
state sends a message requesting a stream containing a device summary, another state
checks if the stream is finished, and a third state processes the received data when
complete. If it takes 1 second to receive the stream, the state machine would use very
little processor time during that 1 second, since each state performs a task and then
returns control back to the processor. Over time, it gets things done.

An instance of the BB_DeviceCtlr_Manager class
manages devices one level below (e.g. a set of
subnetwork devices under a device). The DeviceCtlr
manager creates an instance of the
BB_OneDevice1xLowerThanMe class for each below
device, and then is considered to be their "controller". Controllers collect device
summaries from their below devices, and place these into a library maintained by the
library manager. For details, search "deviceSummary_1xLevelDown_LibraryP".

Three types of libraries

BuildingBus supports three types of libraries:

• AllDevices1xLevelDown: Contains one entry for each lower device (e.g. all subnetwork
devices under one device).

• MultipleDevices: Contains one entry per device, supporting any number of devices, in
any order, from any defining set (e.g. all light sockets in living room).

• OneDeviceMultipleDataCapsules: Contains copies of data capsules (sets of fields) from
one device.

Locating Information in a Library

One does not need to know how libraries are built, or how they are packed, in order to
use them.

To find a device in a library, call FindDeviceWithin_BbLibrary_NoError ().

www.Manhattan2.org BuildingBus Development Guide 28

If a library is of type AllDevices1xLevelDown, one identifies a device with
addressIndex_1xLevelDown_base0, which is the address of the lower device (e.g.
subnetwork # when working with a set of subnetwork devices).

If a library is of type MultipleDevices, one identifies a device with its network address (i.e.
network #, device #, subnetwork #).

If a library is of type OneDeviceMultipleDataCapsules, one identifies an entry (i.e. one data
capsule) with its PortIndex (e.g. 0…7) and BB_CapsuleType (e.g. ImmutableData,
ImmutableStrings, PortRegisters).

Library Element Index

Each entry in a library (e.g. device summary or data capsule) is identified with an index
into the library. This index is referred to as "elementIndex_base1". If
FindDeviceWithin_BbLibrary_NoError () finds what you are looking for, it will return to you
the elementIndex_base1 for that item. Then, you pass that to
CALCULATE_DataElementPosition_GIVEN_ElementIndexBase1 (), which returns a pointer
to your data (dataElementPosition.dataElementPtr).

Iterating Through Libraries

To iterate through a library, one can scan elementIndex_base1 from 1 to the # of entries
in the library. For an example of this, search "for (elementIndex". For each elementIndex,
one can call CALCULATE_DataElementPosition_GIVEN_ElementIndexBase1 () to get a
pointer to the data. This routine loads a BB_LibraryElementIdentifier struct, which
contains a pointer to the data.

Viewing Internal Library Structure with the Debugger

To view internal library information with the debugger, call
ViewLibraryIndicesWithDebugger () and place a break point at the end of this routine. One
might need to #define VIEW_WITH_DEBUGGER_BuildingBus_Library in order to enable
this routine.

Device Summary

For details on the device summary struct, search "struct BB_DeviceSummary_Timestamp".
This struct contains other structs and one can view them to learn more. For details, see:

• struct BB_Device_SUMMARY_Immutable
• struct BB_Device_STATUS_Volatile

www.Manhattan2.org BuildingBus Development Guide 29

• struct BB_Device_LOCATION_Volatile
• struct BB_Device_DISCOVERY_1xLevelDown_Volatile
• struct BB_Device_ACCUMULATION_AllLevelDown_Volatile

The word "volatile" is appended to struct names to indicate they are copies of data that
changes. Subsequently, its data might not be current when one uses it.

The word "timestamp" is appended to struct names to indicate that the collection
date/time is included in the struct. If it was collected a long time ago, it is more likely to be
stale (i.e. not match data in actual device).

The Device_SUMMARY_Immutable struct contains immutable data (never changes) such
as device type, product type, vender ID, and device serial number. The Device_LOCATION
struct contains physical location information, such as "living room" and "room 103" within
a building. These two structs help one locate devices of interest.

www.Manhattan2.org BuildingBus Development Guide 30

Chapter 9) Working with CANbus

Routing of CANbus Messages through the System

Many devices have two physical CANbus cables, and therefore act as a bridge when
moving messages through the system (message passes from one CANbus wire to the
other). For details on how a device figures out what to do after it receives a message (i.e.
process, ignore or bridge), see file BB_EntireDevice_NetworkRouter.cpp.

Working with Messages

The BB_MsgBuilder class helps to create network messages, and the
BB_MsgQueue class maintains a list of messages. However, in many
cases, one interacts at a higher level and instead calls an APPEND_MSG
routine, which makes uses of these two classes. For details, search
":APPEND_MSG".

C functions in files BB_CANbus_FramePacking.c/.h help to pack and
unpack messages, yet these can be ignored as well since higher level
code is easier to work with.

For details on how messages are packed, see "Moving Data from One Device to Any Other
Device" within this document.

CANbus Communication

Each device attaches to one or more CANbus cables, and each cable is managed by an
instance of the BB_CANbusCableInterface class. For example, a window controller
attaches to other window controllers with one cable, and attaches to its subnetwork
devices (e.g. motors in window) with another. The cable that routes toward the master
controller is referred to as "upsteam" (cable index #0) and the one that routes toward
subnetwork devices is referred to as "downstream" (cable index ≥ 1).

Each CANbus cable has both a receive FIFO buffer and a transmit FIFO buffer (class
BB_FifoBuffer_MsgPacket). When a device transmits data, it pushes a message packet out the
transmit buffer (CANbusMsgPacket_Fifo_OUTGOING_MessagesP), and when it receives a message, it
gets the data from a receive buffer (CANbusMsgPacket_Fifo_INCOMING_MessagesP).

Every 10mSec, the device receives an interrupt and checks the receive buffers for new
incoming messages. If it sees them, it processes them via method
Process_Multiple_CANbusMessages ().

http://www.ma2life.org/doc/research/ma2/Active_Window_Development_Initiative_Ma2.pdf

www.Manhattan2.org BuildingBus Development Guide 31

Messages Packets

Each message consists of a 4 byte CANbus identifier and an 8 byte data payload. All 12
bytes are transmitted from an initiator device to a target device. C/C++ code maintains
these 12 bytes in a BB_CANbusMsgPacket struct. After receiving a packet, a device
interrogates it via function UNPACK_CANbusMessage () and places the results of the
interrogation into struct BB_CANbusMsgDescriptor. For details on what the code sees
after the message is unpacked, search "struct BB_CANbusMsgDescriptor".

CANbus Hardware Interface

Several classes interface the outgoing/incoming FIFO buffers to the CANbus hardware.
Class BB_XMC_CANbus_System manages a set of CANbus cables, class
BB_XMC_CANbus_OneNode manages one cable, and class BB_XMC_CANbus_OnePipe
manages one FIFO attached to a cable. Method TryTo_Transmit_One_CANbus_MsgPacket
() pushes one data packet into the CANbus transmit hardware. More specifically, it tries to
do this. If the hardware is busy, it returns quickly without success. When a data packet is
received, an interrupt service routine calls Receive_One_CANbus_MsgPacket (), which
reads the data and pushes it into the incoming FIFO buffer.

One Main Thread plus ISR's

The main thread does 99% of the work. Also, interrupt service routines (ISR's) can
interrupt this main thread at any time. Several ISR's relate to CANbus and they are
synchronized with the main thread via FIFO buffers. For example, the receive ISR
(ISR_CAN_x_Rcv ()) pushes a message into a FIFO while the main thread later pulls it out.
The FIFO's are designed to allow one thread to push while the other pops. This is a bit
tricky, since an interrupt could occur while the main thread is interacting with a FIFO, yet
the code expects this and is designed to support this.

Mutex & Critical Sections

In some of our code, we have mutexes (only one thread interacts with a resource at a
time) and critical sections (interrupts turned off for a short duration). To see these, search
"K_MUTEX" and "__disable_irq ()".

CANbus Status

One can get status information on a CANbus node (cable) by calling
GetStatus_CANbusNode_AlreadyLocked (). This reads the hardware status register,
evaluates it via Calculate_nodeStatusBits (), and places the evaluation results in the

https://en.wikipedia.org/wiki/Mutual_exclusion

www.Manhattan2.org BuildingBus Development Guide 32

"nodeStatusBits" struct. If it sees a problem, it increments a counter associated with that
type of problem via Increment_errorCounters ().

CANbus Bus-Off

If no other devices are attached to the CANbus cable, an acknowledgement is not seen by
the transmitting device and this is considered a CANbus error condition. After multiple
attempts, the transmitting device enters a "Bus-Off" state, which means it can no longer
transmit. When this occurs, we set our
thisNodeIsInBusOffStateProbablyDueToNoDeviceOnCableToAcknoledgeMsg flag. Every ~10 seconds after
setting this flag, we reset CANbus via IfCurrentlyInBusOffStateThen_Reset_CANbus (), which enables us
to check if we can transmit (i.e. we check if someone attached a device to the cable within
the previous 10seconds). For details on this, search this file for "Bus-Off".

Print to Console and Receive CANbus Message Do Not Mix

The XMC print to console pane turns off interrupts for ~10mSec while printing. This can
cause one to miss CANbus messages since one might receive two or more CANbus
interrupts during this 10mSec. When this occurs, only one is serviced. There are several
Debug Configurations -- those labeled "FreeRun" do not print and do not hamper CANbus,
and those labeled "DaveIDE" do. For details, search this file for "Debug Configuration".

Monitoring Processor Activity with an Oscilloscope via ChZ

The DavePrj_BB project is set up to control a digital output bit that is connected to an
oscilloscope (DIO_Bit_ChZ). One sets ChZ_CONTROL to determine when this bit goes up
and when it goes down. For example, set it to CONTROL_ChZ_ISR_Rcv_Canbus_Node_x to
set this bit high while in the CANbus receive ISR. Alternatively, set it to
"CONTROL_ChZ_MasterIdleChore" to monitor the 10mSec main thread activity. For a list
of options, search "Digital I/O ChZ".

Monitoring CANbus with an Oscilloscope

One can connect the CANbus
Transmit (TX) signal to an
oscilloscope to see when a device
is transmitting. Alternatively, one
can monitor the CANbus Hi signal
to see CANbus activity on a cable,
yet in this case, one does not
know who is transmitting.

www.Manhattan2.org BuildingBus Development Guide 33

CANbus Testing

For details on debugging CANbus, search this document for "CANbus Testing".

www.Manhattan2.org BuildingBus Development Guide 34

Chapter 10) Major Function Handlers

Overview

In many cases, one can interact with devices via Read/Write field routines. For example,
one device can read the sensors in another device by reading the
Sensor_Measurement_Channel field within that device. Or control the position of a motor
or LED light illumination by writing to a device's ControlOutput_CommandOutput field.

Devices can work with larger blocks of data via the Get Stream support, described
previously.

However, there is one more way to interact with devices, which is through a function
handler. In this case, one device calls a function within another device. The initiator passes
parameters to the target, the target does something, and the target optionally sends data
back to the initiator. In the underlying code, both read/write field and read stream are
implemented with function handlers. To see these, search ":HANDLER__DeviceCommon_RdWrField"
or search ":HANDLER__DeviceCommon_StreamIO".

A 5-bit Major Function Code (0…31) in the CANbus 29bit identifier is transmitted along
with the 8byte data packet and this specifies which handler receives the incoming
message. For example, if set to 1, the message is passed to the stream IO handler; and if
set to 0, the message is passed to the read/write field handler.

Dispatching to a Handler

Recall that CANBus messages
contain a 0…7 portIndex, and are
therefore directed to a port once
received. From there, they are
dispatched to one of several
major function handlers, as
determined by the
MajorFunctionCode (0…31).
Handler dispatching for the
DeviceCommon class at
portIndex #0 is shown here. To
see all handlers, search
":HANDLER__".

www.Manhattan2.org BuildingBus Development Guide 35

Handlers Digest Information and Respond

Handlers receive messages in the form of a BB_CANbusMsg_FullInformation struct, which
is an unpacked version of the message. This means that parameters coded into the
message have been extracted and placed into easy-to-read fields within this struct. For
details, search "struct BB_CANbusMsg_FullInformation" and search "struct
BB_CANbusMsgDescriptor".

The handler might digest further. For example, the read/write field handler uses
Unpack_RdWrField_MsgPacket () to extract parameters packed into the 8byte data
payload, and places them into a ReadWriteFieldOperation struct. For details, search
"struct ReadWriteFieldOperation". After unpacking, the handler implements the required
function.

We refer to the 0…31 function code as "major" since each handler provides support for
additional functions as determined by parameters in its 8byte data payload. For example,
the read/write field handler enables one to read, or write, as determined by a bit within
the data payload. And HANDLER__DeviceCommon_StreamIO () returns a block of data,
where the specific block is determined by parameters in the data payload (e.g. data
capsule, library of device summaries, or multiple fields).

Conclusion

At a low level, devices interact with each other via read/write field, get stream, and
function handlers.

www.Manhattan2.org BuildingBus Development Guide 36

Chapter 11) BuildingBus Machines

Overview

In BuildingBus lingo a "machine" is a class that contains the following features:

• Executes periodically (e.g. once a second)
• Is controlled with a C struct that contains control parameters
• Maintains data parameters in a C struct

Machines optionally allow other network devices to adjust their control parameters
and/or read their data parameters.

Execution Rate

The main thread executes EXECUTE_MasterIdleChore ()
once every 10mSec. This calls Calculate_Execution_Anniversaries

(), which calculates Boolean variables that are set true at
fixed rates using a hardware-based counter. For
example, executionRate.executing_approximately_once_every_100mSec
is set true once every 100mSec. The executionRate
struct maintains 11 different times, as shown to the right.

Machines use 'executionRate' to execute their idle chores (i.e. processing functions) at
fixed intervals. For example, within EXECUTE_MY_Device_Child_IdleChore (), one can
place the following code to execute at a fixed rate:

If (executionRate.executing_approximately_once_every_...) {
 … do processing
}

Execution Rates are not Accurate

ExecuteRates are not accurate since one might miss a 10mSec interrupt if another
subroutine consumed more processor time than expected. If you are pacing yourself at
100mSec, and another routine consumes the microcontroller for 1 second, for example,
then your 100mSec task would be given time at the next opportunity. After that, it would
wait another 100mSec before it executed again. In this example, 9 execution times are
missed.

Even if other routines behave, the system might not calculate 100mSec exactly, and
instead might provide an approximate rate accurate to +-30%.

www.Manhattan2.org BuildingBus Development Guide 37

If you want accurate time, read the 64bit 1uSec hardware counter (i.e. call
GET_DateTime_1uSec_Units_1Jan2020_int64 ()).

Machines are Smart

BuildingBus machines are where one might implement so called "intelligence". For
example, let's assume we have a window thermal cover that closes when all of the
following conditions are met: room is not occupied, we are not trying to heat the floor
with sun while the sun is shining and room is colder than desired temperature, and we are
not trying to cool the room when outside air is colder than inside air. To implement this, a
BuildingBus machine in the motor device (which controls the thermal cover position)
might interact with sensors to perform this logic.

We do not need to be Too Smart

Our machines do not need to be very smart or very complicated. We are not playing
chess. Instead, we need to be reliable, long lasting, low cost, easy to maintain, and easy to
set up. In a sense, we need to do the simple things well.

www.Manhattan2.org BuildingBus Development Guide 38

Chapter 12) TestSystem Machine

Overview

An example BuildingBus machine is the BB_TestSystemA class. This is executed every
~300mSec via Execute_TestSystemA_IdleChore () and tests multiple devices in a system.
One can use this class to test multiple Platform2Go boards CANbussed together with real
physical wire. This machine is controlled with its 32bit BB_TestSystemA_Control struct and
maintains state and data in its BB_TestSystemA_Data struct. Other devices can write to
this control struct since it sits in a 32bit integer field within the Device Common Port
Registers Capsule. In other words, other devices can set this register via
APPEND_MSG__WriteInt64_DeviceCommon_PortRegister (). Also, other devices can read
its data via stream IO. For an example, search "Read struct BB_TestSystemA_Data in
target test".

Read/Write TestRegister16

This machine does testing with a target device whose address is specified in the 32bit
control struct (target_address_uint16). One test involves writing to the target device's
TestRegister16, which is a 16bit register in the Device Common Port Register capsule.
After writing value X, the register is read back and the callback routine looks for X. If it
passes, a counter is incremented, and if it fails, a different counter is increment. All
counters are maintain in the result data struct.

Read Streams

The machine reads streams periodically from the target device and checks if they are
received and contain a key field in the last byte.

Wait for Response before Testing

The machine continuously reads from the target test device and does not begin testing
until a response is received. This is helpful in cases where the target is not set up when
the test begins. After receiving a response, it waits an additional 3 seconds since messages
might still be in transit.

The Primary Device Controls the Test Target Device's Control Struct

One of the devices in the system is considered the "Primary" device while the others are
considered to the "Test" devices. The primary writes to the TestSystem Control struct in
the Test device and tells it to do testing with the primary as its target. We end up with
multiple devices simultaneously performing tests on each other.

www.Manhattan2.org BuildingBus Development Guide 39

The primary device periodically reads the test device's TestSystem data struct to see how
it is doing and stores this in class member "otherDevice_TestSystemA_Data".

Be careful with printing to the console pane. This can turn off interrupts and cause us to
miss data packets, which show up as errors in the result data structs.

It is helpful to press the Reset button (near DB9 connector) on each Test Device before
the Primary Device begins, so that they start from a known state.

www.Manhattan2.org BuildingBus Development Guide 40

Chapter 13) Testing Multiple Devices in a System

Overview

Pictured here are multiple Platform2Go boards
cabled together via CANbus. In this setup, we
move millions of messages over 24 hours
without error. This includes bridging messages
from one CANbus cable to the other (i.e.
through a device); reading and writing test
registers, reading data streams, and moving
data simultaneously between multiple devices.
For details on the Mikroe CANbus Node #1 PCB
that supports downstream networks (toward
subnetwork devices), search this file for
"NCV7344".

Addressing, Cabling, Connectors, Devices and TestSystem Instances

In the typical case, the Primary Device is at address 1/2/0 (network #, device #,
subnetwork #), Test Device #0 is at address 1/1/0, and Test Device #1 is at address 1/1/1.
To see where addresses are set, search project for "Define Network Address for
PrimaryDevice".

www.Manhattan2.org BuildingBus Development Guide 41

One downloads FreeRun images into the Test Device(s) and disconnects the USB debug
cable after each download. While testing, the Primary Device is attached to the computer
via the USB debug cable while running the "Debug_DaveIDE" or "Debug_FreeRun" image.
The "DaveIDE" image prints yet also incurs occasional CANbus errors due to the
CANbus/printing critical section conflict described previously. The "FreeRun" image does
not print and can run overnight w/o error. For details on managing and creating images,
search this document for "Build Configuration".

Devices 1/1/0 and 1/2/0 attach to each other via their DB9 connectors (upstream cable).
Device 1/1/0 and 1/1/1 attach to each other via a Mikroe board on the 1/1/0 device
(downstream cable) and the DB9 on the 1/1/1 device (upstream cable).

One can purchase DB9 female-to-female pin N-to-N cables from Amazon (cable) or
Digikey (cable). Also, one can purchase from Amazon DB9 Female-Female-Male Y-Cables,
DB9-Female breakout connectors, DB9 Connectors, and 330ohm protection resistors.

The Platform2Go DB9 connector and the Mikroe CANbus Click boards already have
120ohm terminations resistors built-in, therefore one does not need to add these.

When an image begins, it needs to decide how many instances of the TestSystem class to
create and run, and this is determined by define symbol
"NUM_OF_TestSystemA_TO_SET_UP_AND_START_RUNNING". Typically, the Primary device sets this to 3
and Test Devices set it to 0 (since Primary Device controls TestSystem class on Test
Devices).

TestSystem Instance #N does testing with Test Device #N (e.g. TestSystem Instance #0
does testing between Primary Device and Test Device #0). If your Test Device is not
physically connected, then the Primary will send messages to an address with no
response. This does not do harm, and will show up in the result data as a non-responsive
device.

gDeviceMonitor

The global gDeviceMonitor struct contains pointers to important structs, as shown below-
left. One can place this into the Expression pane and view key information after stopping
at a break point. Below-right shows TestSystem result data with no error after running 24
hours (this is real data).

https://www.amazon.com/DTECH-Straight-Through-Serial-Female/dp/B07XP4NCMD/ref=sr_1_14?crid=SYW2HJ4W4P3L&dchild=1&keywords=db9+to+db9+female+to+female&qid=1601315769&sprefix=db9+to+db9+female+%2Caps%2C155&sr=8-14
https://www.digikey.com/product-detail/en/assmann-wsw-components/AK152-2/AE9872-ND/821627
https://www.amazon.com/Splitter-Adapter-Straight-Through-YOUCHENG-Interface/dp/B08P8G9R6D/ref=sr_1_4?dchild=1&keywords=db9+splitter&qid=1611937343&sr=8-4
https://www.amazon.com/dp/B08P75SZ9W/ref=sspa_dk_detail_0?pd_rd_i=B08P76W1QJ&pd_rd_w=Jq3Ks&pf_rd_p=b34bfa80-68f6-4e86-a996-32f7afe08deb&pd_rd_wg=aCv4Y&pf_rd_r=RWRS1170MGQRNPDQZYCG&pd_rd_r=45f879fd-d94b-459b-bfce-2cdafd138008&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyVVNLVkQ1MkpPUjFIJmVuY3J5cHRlZElkPUEwNDE1NjYyM0ZQSzJUSjZKNjM3RyZlbmNyeXB0ZWRBZElkPUEwMTc5OTI2M1ZBMDBHWDVNQ0lOTCZ3aWRnZXROYW1lPXNwX2RldGFpbCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/Pc-Accessories-Connectors-Connector-20-Pack/dp/B014IVD7L0/ref=sr_1_10?dchild=1&keywords=db9+connector&qid=1611937623&s=electronics&sr=1-10
https://www.amazon.com/dp/B07HDFFN81/ref=sspa_dk_detail_0?psc=1&pd_rd_i=B07HDFFN81&pd_rd_w=8Rlq3&pf_rd_p=b34bfa80-68f6-4e86-a996-32f7afe08deb&pd_rd_wg=ZO58t&pf_rd_r=V9JEETGVWZT7427MSSMJ&pd_rd_r=d5019b8d-4ae4-4d63-9ccf-74794dcd14d8&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExN0ZVTlVNWEE0WkFYJmVuY3J5cHRlZElkPUEwMDMwNjg3M0cwWkZBNUJMSUNHRCZlbmNyeXB0ZWRBZElkPUExMDA1ODU4M0NZV0Y3SURDU0hGNSZ3aWRnZXROYW1lPXNwX2RldGFpbCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=

www.Manhattan2.org BuildingBus Development Guide 42

Multiple Images

The DavePrj_BB project can be set up to build images for a Primary Device, Test Device #0,
Test Device #1, and Test Device #2. Build Configurations and Debug Configurations are
associated with these different images. Preprocessor symbols in a Build Configuration
enables the compiling of a specific image (e.g. ENABLE_BuildImage_TEST_TARGET_DEVICE_0 builds
Test Device #0). All compiler switches are maintained in one file
(MY_Project_Compiler_Switches.h).

Multiple Instances of TestSystem Class

BuildingBus includes a BB_TestManager class that maintains
multiple instances of the TestSystem class. Subsequently,
one instance can be set up to do testing with one target
device while another instance with a different target. As
shown to the right, we have 3 instances in gDeviceMonitor
where each exposes the result data from its own tests,
along with the result data from test target devices. In other words, each test target device
has its own result data and it is read by the Primary device every 10seconds. The 32bit
control word for each of these 3 instances is maintained in a 3-element array within the
TestSystemA field of the Port Register capsule (dcrFI_TestSystemA_x_Control_int32).

www.Manhattan2.org BuildingBus Development Guide 43

Working with Configurations

To set the Active Configuration, right click on project name, select Build
Configurations, and select Set Active. To debug using a specific Debug
Configuration, click down arrow next to Debug button, picture to the right.

When working with the Primary device w/o printing, set Active Configuration to:

and use this Debug Configuration:

When downloading an image into Test Device #0, set Active Configuration to:

and use this Debug Configuration:

Testing Comments

Below are several comments on testing.

• Blinking of LED at a 1Hz rate means the software is running ok and has not crashed.
You want to see all your devices blinking while testing.

• Press Reset Button on Test Devices before you begin, so they start from a known
state.

• Place a breakpoint at LogErrorCode () and look for errors (search
"gPutDebuggerBreakpointHere_LogErrorCode"). If a message packet data is wrong, you will not
enter LogErrorCode and instead an error counter will increment in the result data
struct. LogErrorCode is for more serious errors.

• The Platform2Go board has 2 USB connectors. The board receives power from
either. One can attach to both at the same time (diodes block contention).

• CANbus enters a suspended Bus Off state if there is no device on the cable to
acknowledge a transmitted message packet. To see this state being entered, place a
break point at: "thisNodeIsInBusOffStateProbablyDueToNoDeviceOnCableToAcknoledgeMsg = true". If this
occurs, the device will try to recover from this state every 10 seconds. Adding a
working device to the cable is needed for a device to recover from this state.

www.Manhattan2.org BuildingBus Development Guide 44

• After the bus-off state has been entered, all transmissions are deferred (do not occur)
due to the following code. To see this, place a break point at this location:

• To see 10mSec master idle chore routine (main routine that runs every 10mSec), place
a break point at ":EXECUTE_MasterIdleChore(".

• To see CANbus receive a data packet, place a break point at
":Receive_One_CANbus_MsgPacket".

• To see CANbus transmit a data packet, place a break point at
":TryTo_Transmit_One_CANbus_MsgPacket".

• One can press RESET button on the Platform2Go to reset PCB and have code start
at the beginning of main. This will also pull the board out of a Bus-Off state, if
present. If another device is not on the cable, it will re-enter Bus-off after first
transmission.

• One can place an oscilloscope on DB9 connector pin 7 (CANBus hi) to monitor
CANbus activity initiated by multiple devices (you do not know who is transmitting).

• One can place oscilloscope on CAN_TX (Platform2Go X2 CAN_TX/P2.0 is also routed
to X1 connector pin 29) to see a specific Platform2Go board transmit data. If you
monitor the CAN_TX line of two PCB's, you can see which one is transmitting.
CAN_TX is a signal between the microcontroller and the CANbus transceiver IC.
CAN_TX shows a microcontroller IC transmitting, and does not reflect activity on
the bus due to other microcontrollers transmitting.

• Controllers sometimes output data frames on the CANbus continuously, as quickly
as possible, trying to recover from an error (e.g. every 1mSec). This is seen by the
software as a "Bus-Off" state.

• If the oscilloscope shows CANbus activity on CANbus_HI, and you see one pulse on
CAN_TX at the end of each message, then that pulse is acknowledging packets
transmitted by a different PCB.

www.Manhattan2.org BuildingBus Development Guide 45

Debugging CANbus

To debug CANbus, place 'gMonitorCanbusP' into the
Expression pane. This contains much information about the
0th CANbus node (upsteam cable). The
'thisNodeIsInBusOffState...' parameter will be set if the node
is in the Bus-Off state, probably due to no device on the cable
providing an acknowledgement. If one does enter Bus-Off,
the system will try to clear the condition every 10seconds.

The following are sometimes helpful after being added to the
Expression pane. They all relate to the 0th CANbus node
(upstream cable headed toward AMC); however, one could
replace gCanBusNodesP [0] with gCanBusNodesP [1] to see
1st node.

• "gCanBusNodesP[0]": 0th CANbus node. Open
"monitor" and "nodeStatusBits" for more information.

• "gCanBusNodesP[0]->rcv_pipeP" - pipe used to receive
CANbus messages.

• "gCanBusNodesP[0]->rcv_pipeP->FifoBuffer_MsgPacketP": fifo buffer used to
receive messages from CANbus cable.

• "gCanBusNodesP[0]->tmit_pipeP": system that transmits CANbus messages.
• "gCanBusNodesP[0]->tmit_pipeP->FifoBuffer_MsgPacketP": fifo buffer used to

receive CANbus messages.

www.Manhattan2.org BuildingBus Development Guide 46

Chapter 14) Software That Maintains One Device

Review

As noted previously:

• "BB" files do much of the work and are not changed by Industry Programmers.
• Industry Programmers create products.
• Industry Programmers place their code in "MY" files.
• MY files contain children of classes defined in BB files.
• All source code and reference designs are free and open to encourage adoption, to

reduce CO2 emissions. Anyone can copy and modify at no charge.

One Device

Pictured to the right are MY files that create a
VariableControl device. This is a device that is
controlled with an int16 value. This supports:
on/off motors, variable speed motors, 0 to 100%
position stepper motors, on/off lights, 0 to 100%
illumination lights, fans in ducts, and 0 to 100%
open dampers in ducts and at vent openings.

Three Ports

This device has three ports: DeviceCommon,
MeasurementSys, and VariableControl.
DeviceCommon relates to the entire device,
MeasurementSys measures sensors, and
VariableControl implements int16 control.

A folder is dedicated to each port and in this folder we place a setup_ncr.cpp file, port.cpp
file, and port.h file.

Setup_ncr.cpp sets up the port and is not changed by the Industry Programmer. Instead,
we let the compiler build internal capsules (sets of fields) using this file. The filename
contains "ncr", which stands for "no change required".

The port.h file defines structs and enums used by the port class. In many cases, the
industry programmer does touch these. An example is the definition of the
MeasurementSys immutable data capsule (i.e. struct
MY_Dev555_MeasurementSys_ImmutableData). This is influenced by the # of sensors in

www.Manhattan2.org BuildingBus Development Guide 47

the device, which is determined by the industry programmer. This number sets the size of
arrays within the capsule, and since BB files are the same in all devices, we define this
unique struct in the MY file.

Note to Programmer

MY files contain a note to Industry Programmers telling them what needs attention and
what can be ignored, an example of which is shown below. Most MY code is marked "No
change required" and can be ignored.

R/W Field Intervention

The port .cpp files contain class definitions for each port, followed by methods that
operate on capsule fields before they are read from, or written to, by the network. Below
is a summary of these methods:

• OpportunityToUpdate_StatusCode_BEFORE_ReadByNetwork (): Update status
fields immediately before they are read by the network.

• RespondTo_PortRegister_ControlCommand (): Respond immediately after the
network sets a control field.

• OpportunityToRespond_BEFORE_NetworkReadsOrWrites_OnePortRegister ():
Respond to port register read/write field, before being read by the network.

• OpportunityToRespond_AFTER_NetworkReadsOrWrites_OnePortRegister (): Same
as above, yet after the network reads or writes to or from a port register field.

These methods are in MY files, and the Industry Programmer updates as needed. An
example is the reading of a sensor. When the network measures the
Sensor_Measurement_Channel field, the Industry Programmer needs to make sure the
A/D measures the sensor before the value is returned, and does this with code added to
OpportunityToRespond_BEFORE…().

Defining Immutable String and Data Fields

The industry programmer is responsible for defining immutable data and string fields near
the bottom of the port .cpp files (e.g. set vender name string to "Dell Corporation"). For
details, search "DEFINE IMMUTABLE".

www.Manhattan2.org BuildingBus Development Guide 48

Capsule Internal Components

If one wants to learn more about the data capsule's internal components, search for the
following text:

• "CAPSULE FIELD STRUCT": Structs that define components within capsules.
• "CAPSULE DEFINITION": Structs that define entire data capsules.
• "FIELD GROUP CALCULATION": Calculations of internal capsule size and field

information, which is placed into a FieldGroupInfo_OneCapsule struct.
• "FIELD DESCRIPTOR CALCULATION": Calculations of internal field descriptions (i.e. 16bit

value that defines field size and position of field within capsule).

Declare Supported Functions

One declares which Major Functions are supported by each port. For details, search
"DECLARE SUPPORTED FUNCTIONS".

Port Class Constructor Methods

Constructor methods for each port class set up each port, and are often not changed
significantly by the Industry Programmer.

MeasurementSys Sensor Measurement

The MeasurementSys port maintains sensors.
Sensors are declared in an enum and have a big
effect on data capsules since they determine the
size of field arrays, shown below. For examples
of sensors being declared, search "SENSOR CHANNEL DECLARATION".

Sensor values are maintained internally as 32bit floating point values, or 16bit integer, as
determined by the FlexType_System definition. For details on how this works, search
"PORT DATA TYPE DECLARATION".

Sensors are measured via the Measure_One_Analog_Input_Channel () method, which
reads the A/D immediately before the network measures a sensor field. This method is
typically called by base class (BB file) Measure_Sensor_BASE_Class (), which measures the

www.Manhattan2.org BuildingBus Development Guide 49

A/D, scales the value, and stores it, as needed. For details, search
":Measure_One_Analog_Input_Channel" and search ":Measure_Sensor_BASE_Class".

Before sensor measurement occurs, the class constructor calls
Setup_Hardware_ADC_Measurement_System () to set up a/d channels, and calls
Setup_Measurement_Scaling_System () to set up scaling between A/D units (e.g. 0 …
4095) and engineering units (e.g. -32500 to 32500 int16 corresponds to -325.0 to +325.0
°C). For details, please see those routines.

The MeasurementSys ImmutableData capsule contains fields that specify the minimum
and maximum values returned by sensors; along with maximum accuracy and noise; and
sensor type. For details, search "enum BB_SensorType",
and search "struct MY_Dev555_MeasurementSys_ImmutableData_CHANNEL_FIELDS".

Device Type

Each device implements a specific device type, which determines how it interacts with the
network. For a list of device types, search "enum BB_DeviceType_int16".

Many devices are of DeviceType VariableControl, which means you control them with an
int16 value. All of the following devices are variable control: on/off motors, variable speed
motors, 0 to 100% position stepper motors, on/off lights, 0 to 100% illumination lights,
fans in ducts, and 0 to 100% open dampers in ducts and at vent openings. These all place
a child of the BB_VariableControl_Class at portIndex #1. This is similar to what we do with
the MeasurementSys class and sensors, yet the data goes in the opposite direction
(measure vs. control).

Product Type

Every product implements a specific product type, which is how the end user thinks about
the device (e.g. "light socket", "window curtain motor", and "wall light switch"). For a list
of these, search "enum BB_ProductType_int16". Again, device type is how the network
interacts with the device, and product type is what the end user thinks about the device.

Both product type and device type are specified in fields within the DeviceCommon
ImmutableData capsule, at specific field indices. Also, these reside in the Device Summary
structs, which are maintained throughout the network within device summary libraries
(see "productType_int16" and "deviceType_int16"). Subsequently, each device has access
to information on all other devices that includes for each: network address, device type,
and product type (among other parameters).

www.Manhattan2.org BuildingBus Development Guide 50

VariableControl Port

Port #1 is the DeviceType handler port, which
means that it contains a class that implements
the DeviceType.

DeviceType Variable Control supports multiple
output channels (e.g. several light bulbs, several motors), as defined in the MY VariableControl
port.h file (search "OUTPUT CHANNEL DECLARATION"). For each output channel, one specifies
a type (shown below). For a list of these, search "enum BB_VariableControlChannelType".

The MY VariableControl .h file defines the port's capsules, and needs little attention --
much of the source code is marked "No change required".

The MY VariableControl setup_ncr.cpp file compiles internal structures and is exclusively
ncr (no change required).

The MY VariableControl port class .cpp file (e.g. MY_Dev555_port_VariableControl.cpp)
contains methods that allow one to intervene before, and after, fields are read from, or
written to, by the network. Also, it is here that one defines immutable data and
immutable string fields.

The industry programmer updates the Update_One_Control_Output_Channel () method,
as needed, to implement control.

MY Port Setup NCR .cpp Files

The MY port setup.cpp files are marked "No change required", and can therefore be
ignored. These files define the internal structure of data capsules. This includes defining
the 16bit integer that pertains to each field and is embedded into each capsule (search
"FIELD DESCRIPTOR CALCULATION"), and defining the size of capsule components (search
"FIELD GROUP CALCULATION"). Also, this file provides routines that help build capsules,
and check their internal data structure after built.

Entire Device

www.Manhattan2.org BuildingBus Development Guide 51

Several MY files, shown to the right, create the entire
device. Much of the work is done by a child of the
BB_EntireDevice class (e.g. MY_Dev555_EntireDevice),
which creates and maintains ports. For an example, search
":MY_Dev555_EntireDevice".

The MY BuildOneDevice.cpp file contains functions (not class methods) that build entire
devices. These create instances of entire device class and sets them up with different
network address, product types and device types; as desired.

Conclusion

The BuildingBus framework enables the world to develop smarter and more reliable
devices with relatively little effort by industry engineers.

www.Manhattan2.org BuildingBus Development Guide 52

Chapter 15) Creating a New Device

Overview

To create a new device, one can begin with an
existing similar device, copy, and modify.

Copying an Existing Device

Below is a list of steps that create a new device.

• Duplicate the MY files of a similar device and
rename as needed (e.g. change "Dev555" to
"Dev444" within filename). An example of device
MY files are shown to the right.

• Add these new files to both the Visual Studio and
DAVE projects. Visual studio is faster and it is
therefore recommended that you get things
working there first.

• Open all your new MY files and replace your new "Dev" number with the original "Dev"
number, only in open files (e.g. change "Dev555" to "Dev444"). Make sure you do not
do this in all project files, only open files.

• We are assuming your new device has the same device
type as the original device (e.g. VariableControl). If this is
not the case, you need to change your DeviceType Handler
port (e.g. VariableControl at Port#1).

• Your device has a name (e.g. "WindowMotor"). Search and
replace this text in your open MY files as needed. Shown to
the right is the Visual Studio Find in Files panel. Notice how
Look In "All Open Documents" is selected. This enables us
to focus only on the open files.

• Open file MY_Project_Compiler_Switches.h and perform
the following steps:
o #define a BB_BUILD label that pertains to your device. For an example, see

"BB_BUILD_Dev555_VariableControl".
o Add this label to file MY_Master_Include_File.h, in a manner similar to that shown below:

www.Manhattan2.org BuildingBus Development Guide 53

o #define a BUIILD_STRATEGY label that pertains to your device. For an example, see
"BB_BUILD_STRATEGY__Window_Controller_NetworkDevice".

o Set the BB_BUILD_STRATEGY to your new label, an example of which is shown below.

o Try compiling one file. If fails, you might need to adjust your compiler switches.
• Compile and create one new device, without making other changes. Try downloading

into your microcontroller using DAVE. Get this working before making more changes.
• When working under DAVE, make sure you click the Generate Code button after

changing Apps.
• When working under DAVE or Visual Studio, make sure you place a break point in

LogErrorCode (). This is only called if a problem occurs. When that occurs, fix the
problem before continuing.

• Search your MY files for the following text and update as needed:
o SENSOR CHANNEL DECLARATION
o PORT DATA TYPE DECLARATION
o OUTPUT CHANNEL DECLARATION
o :Setup_Hardware_ADC_Measurement_System
o :Setup_Measurement_Scaling_System
o :Measure_One_Analog_Input_Channel
o :Update_One_Control_Output_Channel

• Compile and get this working before continuing.
• Update your immutable fields as needed. For details, search "DEFINE IMMUTABLE".

Compile and get your device working before continuing.
• Continue to refine your code, focusing on unique aspects of your device.

Alternative to Copying Existing Files

Notice how Dev555_BUILD_... () functions in file MY_Dev555_BuildOneDevice.cpp creates
a device with a specific ProductType and DeviceType. An alternative to copying existing
files, described above, is to rework the Dev555 MY files by adding a routine that sets
DeviceType/ProductType differently via a new BUILD function.

www.Manhattan2.org BuildingBus Development Guide 54

Chapter 16) Getting Started with DAVE Software

Downloading DAVE Software

To download free DAVE software, one must:

• Register at Infineon (try to download and it will push you into registering)
• Download 1.2GB file (Dave, Xmc libraries, examples)
• Unzip to 4GB total and place at C:DaveSoftware\ directory (not nested deep into My

Documents since that will exceed 256 maximum path length limitation).

Learning DAVE

To learn more, see Introduction, see Getting Started Guided, and see Overview.

The Working with DAVE Apps document is helpful too (AP32295, 70pg pdf).

Also, after you run DAVE software, select HELP / HELP CONTENTS in the menubar and
then see "XMC Lib Documentation" and "DAVE User's Manual". The "Getting Started"
Chapter within the User's Manual is approximately 50 pages and is worth reading.

The DAVE Forum

One must register to view all posts within the DAVE Forum. This registration is different
from the Infineon Corporate registration (Dave Forum vs Infineon Customer).

Example Projects

For a list of high-quality example projects maintained by Infineon Corporation, click here.
If Google Chrome does not want to download .zip, try Internet Explorer.

Xmc4200 Reference Manual

To view the Xmc4200 Reference Manual (2100 page PDF), click here.

Helpful YouTube Channels

• Asright Asrain
• Infineon4Engineers

References to Applications Notes

Section "Xmc4200 Processor Resources" of the GWeinreb_Manhattan2_ResearchNotes.xlsx
spreadsheet lists a variety of helpful references.

https://infineoncommunity.com/dave-download_ID645
https://www.infineon.com/dgdl/Infineon-DAVE_Introduction-DT-v01_00-EN.pdf?fileId=5546d462636cc8fb01645f681d4713ed
https://www.infineon.com/dgdl/Infineon-DAVE_Quick_Start-GS-v02_00-EN.pdf?fileId=5546d4624cb7f111014d059f7b8c712d
http://dave.infineon.com/Libraries/Tutorials/DAVE-SDK-Quick_Start_1.pdf
https://www.infineon.com/dgdl/Infineon-Working%20with%20DAVE-AN-v01_00-EN.pdf?fileId=5546d4624cb7f111014d33a645221214
https://www.infineonforums.com/forums/7-DAVE-trade
https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html
https://www.infineon.com/dgdl/Infineon-xmc4100_xmc4200_rm_v1.6_2016-UM-v01_06-EN.pdf?fileId=db3a30433afc7e3e013b3c44ccd35c20
https://www.youtube.com/channel/UCBrRFsx921HJSBZ-mm4HLnA/videos
https://www.youtube.com/c/infineon/search?query=dave
http://www.ma2life.org/doc/Common/Manhattan2_All_Research_Files/Manhattan2/Research_Lab/Glenn_Weinreb/GWeinreb_Manhattan2_ResearchNotes.xlsx

www.Manhattan2.org BuildingBus Development Guide 55

www.Manhattan2.org BuildingBus Development Guide 56

Chapter 17) Programming Digital I/O Pins with DAVE

One creates a digital I/O signal by adding a
DIGITAL_IO App to the App panel. One attaches
to a hardware pin via the PIN mapping panel or
Manual Pin Allocator.

One can then read or write via several routines:
DIGITAL_IO_SetOutputLow (),
DIGITAL_IO_SetOutputHigh (),
DIGITAL_IO_GetInput (). For an example, search
for "DIGITAL_IO_LED" in the DavePrj_BB project.

See Also:

• Search "Digital_IO" in the DavePrj_BB project.
• In the DAVE Help menu, select Help Contents / Apps / DIGITAL_IO / Usage.
• In the DAVE Help menu, see Help Contents / DAVE User's Manual / Getting Started /

"10. Pin assignment".
• In the DAVE Help menu, see Help Contents / DAVE Apps / DIGITAL_IO. Sections

'Overview', 'Usage' and 'Methods' are most helpful.
• For examples of going to direct to registers to set digital output bits, search

DavePrj_BB for "BB_DioBit_SetOutputLow".
• Asrain Video #1: Blinking LED (DIGITAL_IO App and Pin Assignment).
• Asrain Video #4: DIGITAL_IO App input pin is connected to a physical button, it is

read using DIGITAL_IO_GetInput (), and then the signal is output to another
DIGITAL_IO App pin via DIGITAL_IO_ToggleOutput ().

• Asrain Video #2 & #5: Digital I/O pins are set up and maintained with XMC library
routines, instead of Apps. One uses internal structs XMC_GPIO_PORT5 and
XMC_GPIO_PORT15, programs them via XMC_GPIO_Init (), sets bits via
XMC_GPIO_ToggleOutput (), and gets bits via XMC_GPIO_GetInput ().

• Asrain Video #3.1 & #3.2 & #6: Program digital I/O pins by reading and writing
directly to/from internal registers. This is confusing, yet does allow one to r/w
multiple pins with one r/w command and only consumes 35nSec of processor time.

• Asrain Video #24: DIGITAL_IO_0 pin input drives EVENT_DECTECTOR signal_a,
EVENT_DECTECTOR trigger_out drives EVENT_GENERATOR trigger_in,
EVENT_GENERATOR iout drives INTERRUPT_1 sr_irq, INTERRUPT_1 drives EXT_ISR
() which toggles DIGITAL_IO_3 pin output. Also, TIMER App drives INTERRUPT_0,
drives Timer_ISR (), toggles DIGITAL_IO_1 and 2 outputs.

https://www.youtube.com/watch?v=zzxLz4jeAqc
https://www.youtube.com/watch?v=_ykzjkmMcxs
https://www.youtube.com/watch?v=CfGZ6h3ihjM
https://www.youtube.com/watch?v=cHvXgwYHdvI
https://www.youtube.com/watch?v=8mdVStY7IM4
https://www.youtube.com/watch?v=wY4j0e9zk8U
https://www.youtube.com/watch?v=1d6njgYvQyI
https://www.youtube.com/watch?v=CE-t9UL9Okk

www.Manhattan2.org BuildingBus Development Guide 57

Chapter 18) Programming the A/D Converter with DAVE

For information on programming the internal XMC 12bit A/D, see:

• Search ":Measure_One_ADC_Channel" within the DavePrj_BB project.
• Xmc4200 Reference Manual Chapter "Versatile Analog-to-Digital Converter (VADC)".
• In the DAVE Help menu, see Help Contents / DAVE Apps / ADC_MEASUREMENT,

ADC_QUEUE, ADC_SCAN and ANALOG_IO (pin). Sections 'Overview', 'Usage' and
'Methods' are most helpful.

• Asrain Video #7: ADC_MEASUREMENT and ANALOG_IO (input pin) Apps read A/D,
and ADC_MEASUREMENT_GetResult () (600nSec) is called by ISR upon completion.
StartConversion () (400nSec) is placed in the GetResult () ISR, causing this to run
continuously as fast as possible (which consumes much of the processor). "Number
of Measurements" is really "Number of channels". If one sets this to 2, for example,
you can get "Channel_A" and "Channel_B", and you refer to these as
ADC_MEASUREMENT_Channel_A (and _B) when you call GetResult (). You refer to
the ADC_MEASUREMENT App when you call StartConversion ().

• Asrain Video #8: Similar to above, yet works with lower level drivers.
• Asrain Video #9: Similar to above, yet does r/w directly to registers, which is

confusing, yet also fast.
• For examples of going to direct to a/d registers, search DavePrj_BB for

"XMC_DirectToRegister_StartConversion" and "XMC_DirectToRegister_GetResult".
• GetResult/StartConversion Speeds: 600/400nSec with Apps, 300/200nSec with low

level drivers, and 80/60nSec direct to registers.
• Asrain Video #11: ADC Continuous Conversion with DAVE Apps + Micrium. This

shows continuous conversion via the ADC_MEASUREMENT App, which drives it's
event_result_b output signal, which drives the INTERRUPT sr_irq input, which
drives the ADC_Result () ISR. This is set up to read 2 channels. ADC_MEASUREMENT
has "continuous measurement" enabled, which means it runs continuously.

• Asrain Video #12: Same as above yet calls to XMCLibs functions and no Apps.
• Asrain Video #13: Similar to above yet work directly with registers.
• Asrain Video #14: ADC Timer Trigger + Micrium. ADC_MEASUREMENTS_0: 2

measurements (2 channels), external trigger input (starts conversion), ChB Result
Event, no ISR upon completion. TIMER_0: 10uSec time interval, ccu4, time interval
event enabled. INTERRUPT_0: drives ADC_Result () ISR. ADC_MEASUREMENT
event_result_ChB drives INTERRUPT_0 sr_irq. TIMER_0 event_time_interval drives
ADC_MEASUREMENT_0 trigger_input. ADC_MEASUREMENT_0 ChA/ChB connected
to pins via Manual Pin Allocator. Timer runs continuously driving a/d measurements
every 10uSec (100ks/sec/channel).

https://www.infineon.com/dgdl/Infineon-xmc4100_xmc4200_rm_v1.6_2016-UM-v01_06-EN.pdf?fileId=db3a30433afc7e3e013b3c44ccd35c20
https://www.youtube.com/watch?v=vGcAAZ9bd0U
https://www.youtube.com/watch?v=N8Xz9JNaoJg
https://www.youtube.com/watch?v=8lLVXJI2e0M
https://www.youtube.com/watch?v=oK4suPftn64
https://www.youtube.com/watch?v=2_w8XgG2-sg
https://www.youtube.com/watch?v=2xA_S2Ieeto
https://www.youtube.com/watch?v=0oTSFk8IlbA

www.Manhattan2.org BuildingBus Development Guide 58

• Asrain Video #15: Same as above yet XMCLibs instead of Apps.
• Asrain Video #16: Same as above yet direct to register.
• Asrain Video #27: PWM App drives 10ksample/sec A/D digitizing via ISR. Also, PWM

set up for ccu8 drives LED and changing duty cycle adjust LED illumination 0 to
100%. PWM period match is turned on which enables its period match output. This
event_period_match output is then used to drive the ADC_Measurement external
trigger_input. ADC_MEASUREMENT connects to an IC pin w/o using an ANALOG_IO
App.

• Asrain Video #28: PWM + EXTI + LTC2500 A/D (32bit SPI a/d Mikroe Click board).
MCLK: sampling clock (different from spi/mosi/miso data clk), connected to DAVE
PWM App, gets 64 pulses for each sample. PWM_CCU8: output to MCLK pin.
EVENT_DETECTOR: trigger_out drives EVENT_GENRATOR trigger_in.
EVENT_GENERATOR: iout output drives INTERUPT_0 sr_irq input. INTERRUPT_0:
drives DRL_ISR () (a/d finished w/ data). DIGITAL_IO_0 pin drives EVENT_DETECTOR
signal_a input; and also drives PWM ext_event0. DIGITAL_IO_1 pin routes to LED
light. This drives a/d ic with 64pulses per sample and causes ISR to fire when
complete.

• Asrain Video #29: This builds on previous video and adds SPI + DMA interface.
• Asrain Video #30: This builds on previous video and as sample rate clock via TIMER.
• Search "analog" among Infineon's example programs.
• DAVE A/D Apps:

https://www.youtube.com/watch?v=RPn2dbsxhzA
https://www.youtube.com/watch?v=GK529HTvBr8
https://www.youtube.com/watch?v=Qyrl-sFFlNU
https://www.youtube.com/watch?v=z05HRjqWjJM
https://www.youtube.com/watch?v=gxB9yF8tfak
https://www.youtube.com/watch?v=tsIzCqdKRho
https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html

www.Manhattan2.org BuildingBus Development Guide 59

Chapter 19) Programming Timers with DAVE

 For information on programming timers, see:

• Search "timer" among Infineon's example programs.
• In the DAVE Help menu, see Help Contents / DAVE Apps / PWM, TIMER, SYSTIMER,

and COUNTER. Sections 'Overview', 'Usage' and 'Methods' are most helpful. In the
DAVE Help menu, select Help Contents / Apps / Timer / Usage.

• If you do not work with Apps, make sure your ISR routine clears each event (e.g.
calls TIMER_ClearEvent ()).

• The TIMER App drives an Interrupt Service Routine (ISR). If you want a TIMER that
outputs a signal, then consider the PWM App instead. If you want the PWM App to
drive and ISR, then attach an INTERRUPT App to it.

• If you want a
PWM output
(clock) to drive a
COUNTER App
(input) then
route the PWM timer_status output (not clock out) to the counter_input. For
details on status signal click here.

• If you want a PWM App to drive an INTERRUPT App which calls an Interrupt Service
Routine, then see the Dave Help User's Manual Getting Started "Chapter 5 --
Composing your first application using DAVE Apps".

• One can add an Interrupt Service Routine (ISR) via the SYSTIMER App. For an

example of this, see SETUP_SYSTIMER_10mSec_BbTick_InterruptServiceRoutine ()
in the DavePrj_BB project. Make sure you don't have two ISR's working on the same
memory, else they will conflict.

• See above A/D and Digital I/O Asrain videos that make use of TIMER and PWM.
• Search this document for "TIMER_" and "PWM".
• If you want to create a onetime hardware delay, search "CreateTimer" in this post.
• DAVE counter/timer Apps:

https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html
https://www.infineonforums.com/threads/4361-Genarate-correct-amount-of-pulses-using-timer
https://www.infineonforums.com/archive/index.php/t-5483.html?s=2d80f986f0f8667ffbfe1ac904a21f64

www.Manhattan2.org BuildingBus Development Guide 60

www.Manhattan2.org BuildingBus Development Guide 61

Chapter 20) Programming Motors with DAVE

For information on programming motor control, see:

• For an example XMC stepper motor project, click here.
• For a partially working Xmc4200 motor project, see directory

"DavePrj_StepperMotor_NotWorking_11-7-2020_Cephas".
• BLDC motor control software using XMC
• Example Position Code (file "Infineon-POSIF-XMC1000_XMC4000-AP32289_Example_Code-AN-v01_01-EN")
• POSIF (position) Summary
• Summary of XMC motor control applications
• Search "motor" among Infineon's example programs.
• In the DAVE Help menu, see Help Contents / DAVE Apps / select motor Apps.

Sections 'Overview', 'Usage' and 'Methods' are most helpful.
• DAVE motor control Apps:

https://www.element14.com/community/docs/DOC-89076/l/4-test-on-switch-shields-infineon-smart-power-switch-bundle
https://www.infineon.com/dgdl/Infineon-AP32359_BLDC_Motor_Control_Software-AN-v01_00-EN.pdf?fileId=5546d46258fc0bc101596988325e3f87
https://www.infineon.com/dgdlc/en?dcId=8a8181663431cb50013431cb500b0000&downloadTitle=Infineon-POSIF-XMC1000_XMC4000-AP32289_Example_Code-AN-v01_01-EN.zip&download=L2RnZGwvSW5maW5lb24tUE9TSUYtWE1DMTAwMF9YTUM0MDAwLUFQMzIyODlfRXhhbXBsZV9Db2RlLUFOLXYwMV8wMS1FTi56aXA/ZmlsZUlkPTU1NDZkNDYyNGU3NjVkYTUwMTRlZDkzOGQzZWIzMjU4
https://www.infineon.com/dgdl/Infineon-IP_POSIF_XMC-TR-v01_02-EN.pdf?fileId=5546d4624ad04ef9014b078101c9226c
https://www.infineon.com/dgdl/Infineon-APP_MotorControl_XMC_in_Motor_Control_Applications_XMC-TR-v02_00-EN.pdf?fileId=5546d4624cb7f111014ceb7aebc3268c
https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html

www.Manhattan2.org BuildingBus Development Guide 62

Chapter 21) Programming CANbus with DAVE

For information on programming CANbus, see:

• Search this file for "Working with CANbus"
• Search this file for "Testing Multiple Devices in a System"
• Search this file for "connect together two"
• CANbus Wikipedia Article
• Infineon CANbus Summary presentation
• Infineon CANbus Application Note #AP32300.
• Xmc4200 Reference Manual Chapter "Controller Area Network Controller".
• Search "CAN" among Infineon's example programs. Both "CAN_EXAMPLE_XMC45"

and "MULTICAN_CONFIG_EXAMPLE_XMC47" are helpful. PDF files provide detailed
documentation on each.

• For example Xmc4200 CANbus code, see directory "DavePrj_CANbus_12-20-
2020_Frank".

• In the DAVE Help menu, see Help Contents / DAVE Apps / CAN_NODE and
GLOBAL_CAN. Sections 'Overview', 'Usage' and 'Methods' are most helpful.

• DAVE communication Apps:

https://en.wikipedia.org/wiki/CAN_bus
https://www.infineon.com/dgdl/Infineon-IP_MultiController_Area_Network_MultiCAN-TR-v01_00-EN.pdf?fileId=5546d46254e133b401554de8f66b5e19
https://www.infineon.com/dgdl/Infineon-AP32300_XMC_MultiCAN-AN-v01_00-EN.pdf?fileId=5546d462557e6e890155a049fb915be3
https://www.infineon.com/dgdl/Infineon-xmc4100_xmc4200_rm_v1.6_2016-UM-v01_06-EN.pdf?fileId=db3a30433afc7e3e013b3c44ccd35c20
https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html

www.Manhattan2.org BuildingBus Development Guide 63

www.Manhattan2.org BuildingBus Development Guide 64

Chapter 22) Programming SPI Communication with DAVE

For information on programming SPI communication, see:

• Search "spi" among Infineon's example programs.
• See Asrain's videos on LTC2500 connected to microcontroller via SPI
• Search this file for "SPI".
• In the DAVE Help menu, see Help Contents / DAVE Apps / SPI_MASTER. Sections

'Overview', 'Usage' and 'Methods' are most helpful.
• DAVE communication Apps:

https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html

www.Manhattan2.org BuildingBus Development Guide 65

Chapter 23) Programming DC and/or AC Power Conversion with DAVE

For information on programming power conversion (e.g. DC-to-DC), see:

• Search "power" among Infineon's example programs.
• See "Xmc Power Application Notes" in GWeinreb_Manhattan2_ResearchNotes.xlsx.
• In the DAVE Help menu, see Help Contents / DAVE Apps / power conversion Apps.

Sections 'Overview', 'Usage' and 'Methods' are most helpful.
• DAVE power conversion Apps:

https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html
http://www.ma2life.org/doc/Common/Manhattan2_All_Research_Files/Manhattan2/Research_Lab/Glenn_Weinreb/GWeinreb_Manhattan2_ResearchNotes.xlsx

www.Manhattan2.org BuildingBus Development Guide 66

Chapter 24) Programming LED Illumination Control with DAVE

For information on controlling LED illumination (e.g. 0 to 100% illumination of 10Watt LED
bulb), see:

• Search "LED" among Infineon's example programs.
• In the DAVE Help menu, see Help Contents / DAVE Apps / lighting Apps. Sections

'Overview', 'Usage' and 'Methods' are most helpful.
• DAVE lighting control Apps:

https://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html

www.Manhattan2.org BuildingBus Development Guide 67

Chapter 25) Cabling Together Multiple Platform2Go via CANbus

Cabling Together Two Xmc4200 Boards

To connect together two Xmc4200 boards: connect pin 7 to 7, pin 3 to 3 (or 6 to 6), and
pin 2 to 2 between the two DB9 connectors ("Node #0"). The Xmc4200 Platform2Go
board schematic is shown below. This board has a male Db9; therefore, a cable between
two of these boards is Db9 female to Db9 female. For details on where to buy
components, search this document for "Amazon".

Attaching 2nd CANbus Cable to Xmc4200
PlatformToGo

To attach a 2nd CANbus interface to an
Xmc4200 board ("Node #1"), one needs to
connect a transceiver IC (e.g. NCV7344) to
specific CANbus pins on the microprocessor,
as pictured below.

www.Manhattan2.org BuildingBus Development Guide 68

We specify which IC pins are utilized for CANbus using the DAVE Global Pin Allocator ,
pictured below. CAN_NODE_0 (Platform2Go DB9 Connector) is directed toward upstream
devices (toward AMC master controller) and CAN_NODE_1 (Mikroe Daughterboard) is
directed toward downstream devices (e.g. IC pins #35 and #48).

One can get a Transceiver IC mounted on Mikroe Click board (CAN FD Click 4, #MIKROE-
4107) and then run jumpers from this board's Tx/Rx pins to Platform2Go PCB pads. This
Mikroe board uses an NCV7344 IC to translate TX/RX to CANbus Hi/Lo.
We bend the RX, TX and Cs pins on the Mikroe board 90 degrees so that they do not enter
the socket, to gain control over their use. Subsequently, we do not need to be concerned
with a UART interacting with this circuit.

https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-4107/12318607?s=N4IgTCBcDaILIEkDSAlA8gUQLQBYCMADAOwgC6AvkA
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-4107/12318607?s=N4IgTCBcDaILIEkDSAlA8gUQLQBYCMADAOwgC6AvkA
https://download.mikroe.com/documents/datasheets/NCV7344-datasheet.PDF

www.Manhattan2.org BuildingBus Development Guide 69

The below illustration shows how we set up CANbus Node #1.

• We route CANbus TX signal from transceiver TX pin to microcontroller IC pin P2.7
via 330 ohm resistor (red in above dwg). This is labeled "RX" on actual Mikroe PCB,
which is misleading. One can ignore this. They do this since UART Tx is attached to
UART Rx, yet we are not working with UART. The Mikroe PCB P2.7 pin might be
labeled "RST" on the Mikroe PCB, yet we do not use this as a reset signal. It is
routed to microcontroller IC pin P2.7.

• We route CANbus RX signal from transceiver RX pin to microcontroller IC pin P1.4,
via X1 connector pin 15, via 330 ohm protection resistor (green in above dwg). This
is labeled "TX" on actual PCB, yet we ignore this.

• We do not insert the Mikroe PCB RX and TX pins into the socket and instead bend
them 90 degrees and attach directly to them, to gain 100% control over them (e.g.
so that someone does not try to attach a UART to them).

• Transceiver IC "STB" pin needs to be attached to GND to enable this IC (e.g.
NCV7344). We bend this Mikroe pin 90 degrees to isolate it and then short it to
GND, so that we are not dependent on the microcontroller to set it low via Mikroe
"CS".

• Mikroe CANbus Hi is routed to pin 7 of DB9-female (purple in above dwg).
• Mikroe CANbus Lo is routed to pin 2 of DB9-female (orange).
• We route PCB GND to pin 3 of DB9-female.
• The Mikroe board and the Platform2Go boards already have a 120 ohm termination

resistors built-in. One can see this with an ohm meter.

www.Manhattan2.org BuildingBus Development Guide 70

Below are several photos that show a Mikroe PCB on a Platform2Go board. For more
photos, search this file for "Multiple Devices in a System".

www.Manhattan2.org BuildingBus Development Guide 71

Chapter 26) Working with the DAVE Project File System

Importing Many Files into a Dave Project

One can import 100's of files/folders into a DAVE project with one operation using the
Import feature, shown below.

Create Links

When Adding Files to a Project, Make sure you "Create Links" (not copy files). Click the
ADVANCED button to access this checkbox.

www.Manhattan2.org BuildingBus Development Guide 72

The resulting DavePrj_BB project should look like the following within the DAVE
development system:

We keep the BuildingBus framework source code in one folder, as shown below. This is
accessed by both the DavePrj_BB project and the Windows OS project.

Reset DAVE Workspace

If you cannot launch DAVE (e.g. it crashes), find your Workspace folder, rename it to
"SameNameAsBefore - damaged", create a new empty folder w/ the same name as the
previous workspace, re-run DAVE, select the new empty folder, and then import your
project into the new DAVE workspace system. DAVE will set up a new workspace in your
new empty folder. If you want your Debug Configurations in the new workspace, then
copy them from the damaged folder and place them into the new folder, as shown in the
below example.

www.Manhattan2.org BuildingBus Development Guide 73

www.Manhattan2.org BuildingBus Development Guide 74

Chapter 27) Working with the DAVE Debugger

Setting up the DAVE Debugger with a .elf Debug File

If you run the debugger and get a “Program File Not Found” error, then
perhaps the selected program file in the debugger settings window is not
correct. To fix, press the debug icon, and click ‘Debug Configurations’ as
shown in the screenshot below.

Then, in the resulting window, press the ‘Search Project’ button

Then select the .elf file that pops up in the menu (e.g. "Debug/DavePrj_BB.elf"). Press OK
and then click the Apply button.

www.Manhattan2.org BuildingBus Development Guide 75

Setting up a Debug Configuration

Set up one configuration (Debug, not Release), in
a manner similar to the dialog shown to the right
(else the debugger might not work). If you have a
Release configuration, then create a Debug
configuration.

Compile, Download, Run, Debug

To download your code into the processor and run the program under the
Debugger, click the Debug button, pictured to the left.

Connecting DAVE to the Segger JLinkGDBserverCL.exe file

If you get a "Launching Project-Name has
encountered a problem” alert with details
"Cannot run program
JLinkGDBserverCL.exe", then you
probably need to install the Segger
debugger.

To do this, download and install. File
"JLink_Windows_V690a.exe" will place
debugger at "C:\Program Files
(x86)\SEGGER\JLink".

Do not have the xmc42xx USB connector
cabled to the computer USB connector
when you install this software. When
finished installing, physically attach the
Xmc42xx via a USB cable. In the Windows Device manager you should see "J-Link Driver"
appear under USB devices. Then, run the DAVE software. For details, click here.

Free Debugger Has Limitations

The DAVE debugger provides a limited number of break points with the free license.

https://www.segger.com/downloads/jlink/JLink_Windows.exe
https://www.infineonforums.com/threads/11675-Error-Launching-command-JLinkGDBServerCL.exe-failed

www.Manhattan2.org BuildingBus Development Guide 76

Suspend Wants Breakpoint at Start

If one wants to be able to suspend a program while running (Suspend button
pictured at far right) to stop the program and examine variables, they need to
first place a break point at the start of main (), pictured below.

Viewing a Device

The device class is contained in the gDevP pointer;
therefore, one can add this to Expressions pane to see
internal variables.

Terminating the Debugger Session

If you get a debugger error similar to that shown here:

Then right-click the .elf file, shown below, and select "Terminate".

www.Manhattan2.org BuildingBus Development Guide 77

Chapter 28) Debug and Build Configurations

Dave IDE Controlled Image vs Free Running Image

There are two ways of controlling a downloaded DAVE image. One is to have the DAVE IDE
software control the image via USB, which supports printing to the DAVE console. And the
other method is to have an image that does not print to the DAVE console window, and
the USB debug cable to computer is optional. The first method is used to develop code
and requires a Windows computer be attached to the microcontroller via USB. The second
method is for a board that may or may not be attached to Windows via USB (e.g.
Platform2Go reference board or a dedicated PCB w/ a microcontroller). If you build an
image that uses the first method, it will not run without the USB cable since it will not
receive the begin execution command from the DAVE IDE software.

Build Configuration and Debug Configuration

There are two different groups of settings within the DAVE IDE. One is the "Build
Configuration", which controls how a project is compiled and linked; and the other is the
"Debug Configuration", which determines how the program is downloaded and debugged.

Primary Device, Test Device #0, Test Device #1, etc

The project can build an image for multiple devices in a system, as described previously.
The Primary device is the device in the system that runs the tests. The test devices
respond to the primary, as described previously. The Build/Debug Configurations with
"PrimaryDevice" in the name are used to make an image for the Primary Device, and
Build/Debug Configurations with "TestTarget_N" in the name are used to make an image
for Test Device #N.

Debug_DaveIDE, Debug_FreeRun and Release_FreeRun

The DavePrj_BB project has multiple Debug/Build
Configurations, as shown to the right. The
"Debug_FreeRun_PrimaryDevice" Build Configuration is
associated with the Debug Configuration with the same name.
The same is true with the other configurations.

The Debug_DaveIDE configuration will not run if the debug USB cable and Windows DAVE
IDE host are not attached. If you want a board that runs on its own, you need to download
a configuration that has "FreeRun" in the name.

Configurations with "Debug" in the name enable debugging code and do not optimize;
whereas configurations with "Release" in the name do the opposite.

www.Manhattan2.org BuildingBus Development Guide 78

The below table summarizes the various configurations.

 Debug_DaveIDE… Debug_FreeRun… Release_FreeRun
Build Configuration name Debug_DaveIDE… Debug_FreeRun… Release_FreeRun
Debug Configuration name Debug_DaveIDE… Debug_FreeRun... Release_FreeRun
Requires Computer USB Debugger
Connection to Microcontroller PCB

Yes no no

Supports print to computer console pane via
XMC_DEBUG()

Yes no

no

XMC_DEBUG_ENABLE defined in C, C++ and
Assembly preprocessor panel

Yes no no

BB_DEBUG_ENABLE defined in C, C++ and
Assembly preprocessor panel

Yes Yes no

Call initialise_monitor_handles() in main() Yes no

no

C and C++ Compiler Optimization no no

Yes

Linker / Miscellaneous / Other flags set to " --
specs=rdimon.specs"

Yes Yes no

Preprocessor symbols (e.g. XMC_DEBUG_ENABLE, BB_DEBUG_ENABLE)

Preprocessor symbol XMC_DEBUG_ENABLE enables the DAVE console printing and
internal DAVE error checking.

Preprocessor symbol BB_DEBUG_ENABLE enables BuildingBus testing and error checking.
In the code, one checks for "BB_DEBUG", which is defined in a .h file if
BB_DEBUG_ENABLE has been defined (two step processes gives you control over this in .h
file).

Preprocessor symbol WIN32_ is defined if running under Windows Visual Studio.

Preprocessor symbol ENABLE_BuildImage_TEST_TARGET_DEVICE_N is defined if building
an image for Test Device #N.

Preprocessor symbols are defined for C compiler, C++ compiler, and assembler.

Debug_DaveIDE… Debug_FreeFun… Release_FreeRun…

Putting it all Together

www.Manhattan2.org BuildingBus Development Guide 79

As shown below, the Debug_DaveIDE… debug configuration references the
Debug_DaveIDE… resources, the Debug_FreeRun… debug configuration references the
Debug_FreeRun… resources, etc. One needs to be careful to keep track of these.

Printing to the DAVE Console Panel

To print text to the DAVE Console panel, call
Print_Line_Char8 () within the BuildingBus
system. For details on how this works, search
"How to Enable XMC Debug Printing" in the
DavePrj_BB project.

To set up console printing one must set up the following. For details, click here.

• Enable "Semihosting" and "GDB Client" (among other things), as shown above.
• Set Linker / Miscellaneous / Other flags to " --

specs=rdimon.specs", as shown to the right.
• Define XMC_DEBUG_ENABLE preprocessor symbol

for C, C++, and Assembler.

Debug_DaveIDE… sets up printing as described above; however, Debug_FreeRun… and
Release_FreeRun… do not print.

If the above linker options (i.e. " --specs=rdimon.specs") are
not set up you might get the follow error when you mouse
over Disassembly text (DAVE does not have access to resource
it needs to show you information).

https://www.infineonforums.com/threads/6007-printf-in-DAVE4.4.2

www.Manhattan2.org BuildingBus Development Guide 80

Remember to click "Generate Code" after updating your Apps, with each
configuration.

www.Manhattan2.org BuildingBus Development Guide 81

Chapter 29) Debugging Techniques

LogErrorCode

In all cases, place a breakpoint at
LogErrorCode () to identify problems as quickly as possible. You should never enter this
routine with an error. If you do, it is a bug and needs attention.

Blinking LED

In all configurations, we blink the Platform2Go LED once a second. For details, search
"TOGGLE_LED_EVERY_1_SECOND".

Identifying Processor Position after a Crash

If your processor crashes and you are not sure
what it was doing before the crash, then place
'gCpuMonitor' into the Expressions pane.

Parameters 'lastExecutionPosition' and
'lastForegroundThreadPosition' indicate last
processor position. Note their values, identify
their corresponding BB_ProcessorPosition
enum label, and then search the code for
those labels.

The 'weAreInside' struct, shown to the right,
contains bits that are set if the processor is in
a specific area. Look for cases where these are
set and then search for their name to learn
more.

www.Manhattan2.org BuildingBus Development Guide 82

Detecting Stack Collision

If your processor crashed and you click on the Suspend button and see something similar
to the below text, then you may have run out of memory in a stack collision.

This means your local variables in your nested
functions are using up too much memory. To see
this, add a 4KB array to one of your functions, as
pictured to the right, and try stepping through this
code. You will probably end up w/ the IRQ handler response, shown above, with no stack
crawl telling you how you got here.

Below is a list of other causes of a crash that do not produce a stack crawl:

• Non-existent Interrupt Service routine (ISR), or ISR with incorrect name, or ISR with
a C++ prototype instead of C.

• One thread enters an XMC library routine, another thread interrupts, and the 2nd
thread enters the XMC library as well (they are sometimes not re-entrant).

www.Manhattan2.org BuildingBus Development Guide 83

Chapter 30) Working with the DAVE Integrated Developer Environment (IDE)

Stop Display Scaling with High Resolution 4K Monitors

Some versions of the DAVE.exe application program do not display fonts and icons of
correct size, and do not fully show DAVE App dialog boxes, possibly when working with
high resolution 4K monitors. For details, see ref1 and ref2.

One remedy is to place the following at the end of the DAVE.ini file, which resides next to
the Dave.exe file.

-Dswt.enable.autoScale=true
-Dswt.autoScale=150
-Dswt.autoScale.method=nearest

The autoscale value that works that works the best might depending on your monitor. 4K
monitors with 3840 x 2160 resolution seems to work well with autoScale=150. If you open
the MULTICAN_CONFIG App, you might notice some of the text is clipped when autoscale
is too small, or too large. 150 works just right.

The location of the DAVE.ini files
is determined by where you
placed your installation, after
unzipping.

In many cases, one can remedy
this problem by selecting the application .exe file, right-click Properties, and then select
"Disable display scaling on high dpi monitors". However, in order for that to work, one
needs a manifest file and standard windows installation program, which is not the case
when one installs by unzipping and placing the .exe at any location. In other words,
Properties is not likely to help you.

https://stackoverflow.com/questions/20718093/eclipse-interface-icons-very-small-on-high-resolution-screen-in-windows-8-1
https://www.infineonforums.com/threads/4738-DAVE-4-on-HiDPI-monitor

www.Manhattan2.org BuildingBus Development Guide 84

Chapter 31) Working with the DAVE Compiler and Linker

Compiler Options

Compiler options enable one to optimize code and reduce total code size. The debugger
will not work as well when code is optimized, yet optimization does reduce code size. For
details, select the DAVE Help menu, select Help Contents / User's Manual / Getting
Started / Chapter 14 - Tweaking the build toolchain settings.

If you want to update your DAVE development environment, then see Help Contents /
User's Manual / Getting Started / 15. Keeping your DAVE installation updated.

If you want to move your DAVE project to a different microcontroller or update your Apps
to a newer version, then see Help Contents / User's Manual / Getting Started / 16. The
great migration.

To program the way your microcontroller boots up, see Help Contents / User's Manual /
Getting Started / 18. BMI (Boot Mode Index).

C++ Compiler Version set to "2014 C++ w/ Gnu Extensions" (yet -std is much lower?)

www.Manhattan2.org BuildingBus Development Guide 85

Chapter 32) Working with DAVE Apps

Overview of Apps

One can program using icons, each of which are referred to as an "App".

After you place your Apps, you need to click the "Generate Code" icon, pictured to
the left. DAVE then auto-generates multiple files and places them into the Dave
folder. You can click on "Dave / Generated / DAVE.c" and "Dave / Generated /

DAVE.h" to see what it did.

DAVE.c contains the initialization routine
DAVE_Init (), which is called from main (). This
initializes your Apps. The DAVE.h file includes the
.h files that you will be using. To open a .h file,
select it, right-click, and select "Open
Declaration". For example, after placing the RTC
(real-time clock) App, one can call RTC_GetTime
() to get the current date and time. To learn
more about an App, select Help Contents in the
Help menu, DAVE Apps, and then the App. If you
see security alerts, click Cancel and Unblock as
described later in this document. In the Help
system, one can click on a list of topics to learn more. "Overview" is typically a good place
to begin. "Usage" and "Methods" are helpful too.

Interrupt Service Routines

If an interrupt service routine (ISR) is referenced in an App and does not exist in the
source code, you will not get a compile/link error. Instead, your program will crash and
the cause will not be obvious. Also, your ISR needs to be a C function, which means you
need to wrap the prototype and declaration in extern "C" {...}. If this is not done, the same
will occur -- crash with non-obvious cause.

Notes on Apps

• To export/import one Apps, select it, right-click, select Export or Import.
• Select Report or Global Interrupts in DAVE menu for more info on your Apps.
• The E_EEPROM App helps to set up an area of memory to be used as FLASH
• For a summary of each App, see page 15 of this document.

https://www.infineon.com/dgdl/Infineon-Working%20with%20DAVE-AN-v01_00-EN.pdf?fileId=5546d4624cb7f111014d33a645221214

www.Manhattan2.org BuildingBus Development Guide 86

Chapter 33) Setting up 128uSec 64bit Counter and 10mSec ISR Apps

The DavePrj_BB project uses several DAVE Apps to create a Real-Time Clock (RTC App),
64bit hardware counter that counts a 128uSec clock (PWM and COUNTER App), and an
Interrupt Service Routine that runs once every 10mSec (SYSTIMER).

The resulting Apps diagram is shown below:

The hardware connectivity is shown as follows:

To pull these Apps into your project, import file
"BB\Dave_Apps_Exported\DavePrj_BB\DaveApps_Export_10mSecIsr_RTC_128uSec64bitC
tr_12-21-2020.xml".

RTC Real-Time Clock

The RTC App is placed on the App panel. One can then call routines that get date & time.
The RTC App does not call an Interrupt Service Routine (e.g. "seconds" is not selected in
below dialog) since we already have one primary ISR that runs every 10mSec and one can

www.Manhattan2.org BuildingBus Development Guide 87

divide down to make an ISR that runs once a second (or more) that does not trample
memory being worked on by the primary thread.

SYSTIMER Calls ISR Once Every 10mSec

The SYSTIMER App is placed on the App panel. Then, the
SETUP_SYSTIMER_10mSec_BbTick_InterruptServiceRoutine () routine sets up an interrupt service routine named
HARDWARE_10mSec_BbTick_InterruptServiceRoutine () that is called once every 10mSec (search these names in
DavePrj_BB for details). This has a low priority of 63 (others can easily interrupt) since we do
not want to block important processes of more priority.

We set the SysTick timer period to 1000uSec. Subsequently it internally executes once every
1mSec, and when it does, it calls other ISR's at a multiple of that rate. The 10mSec ISR that
we set up will be called once every ten 1mSec internal interrupts. The time accuracy on this
ISR is not accurate since code can defer this interrupt (it might only run 50 times a second).
If you want accurate time, then call GET_DateTime_1uSec_Units_1Jan2020_int64 ().

We interact w/ SYSTIMER via C code instead of an App since we want more control.
Alternatively, one could use a PWM App drive to an INTERRUPT App. For details on this 2nd
method, see the Dave Help User's Manual Getting Started "Chapter 5 -- Composing your first
application using DAVE Apps".

128uSec Clock Produced by PWM App

A PWM App named "PWM_128uSec_clk" outputs a 128uSec clock (7.8 KHz).
SETUP_128uSec_Counter_Timer () sets this up when your program begins.

www.Manhattan2.org BuildingBus Development Guide 88

Hardware Counter Counts 128uSec

A COUNTER App named "COUNTER_counts_128uSec_clk" counts the 128uSec clock (7.8
KHz) from the above PWM. "Start after initialization" is selected.

The PWM "timer_status" (i.e. not clock output) is connected to the COUNTER
counter_input via the HW Connections dialog. Subsequently, one can read the counter to
establish accurate time.

GET_DateTime_1uSecUnits_1Jan2020_int64()

One can call GET_DateTime_1uSecUnits_1Jan2020_int64 () to receive the number of
int64 microseconds since midnight Jan 1, 2020.

Alternatively, one can call GET_DateTime_10SecUnits_1Jan2020_int32 () to get the
number of int32 10second quanta since Jan 1, 2020.

These routines in turn call XMC_HARDWARE_GET_DateTime_1uSecUnits_1Jan2020_int64 (), which
maintains a 64bit 1uSec counter that is based on the 16bit 128uSec hardware
COUNTER/PWM Apps, described above. XMC_HARDWARE_GET_DateTime...() sees the
16bit counter roll-over every 10 seconds and increments the high 48bits component using

www.Manhattan2.org BuildingBus Development Guide 89

software. When one wants a 64bit 1uSec count, the system adds the high 48bits to the
low 16bits to get an accurate hardware based count For details, see
XMC_HARDWARE_GET_DateTime_1uSecUnits_1Jan2020_int64 () in the DavePrj_BB project.

In order to get date/time with respect to Jan 1, 2020; devices send messages with the
actual # of seconds and we adjust the base (g_1uSec_Counter_BASE_int64) as needed.

The difference between Jan 1, 2020 and Jan 1, 1970 is 1,577,836,800 seconds, as noted
here.

For more information, see file "BB_Xmc_Cpu_Support.c" in the DavePrj_BB project.

Remember to click "Generate Code" after updating your Apps.

Testing

To test the above, we call REALTIME_CLOCK_RTC_1_second_InterruptServiceRoutine () and
TEST_Counter_Timer_Hardware () once a second. We found the 128uSec 64bit hardware counter to
be very accurate yet the 10mSec ISR counter was off time-wise by ~1%. It is ok, perhaps
even good, if ISR's are off by 1%, or more, since it means the processor is able to focus on
other things that are of more priority. The 10mSec ISR drives the main thread master idle
chore, and is not considered to be of priority. An example of something with priority is we
receive a CANbus message, which calls an ISR, and we need to pull it out of CANbus
controller hardware before another message comes in and is ignored due to a full
controller. In this case, the CANbus Receive ISR needs priority over the main thread.

https://www.calculator.net/time-duration-calculator.html?today=01%2F01%2F1970&starthour2=0&startmin2=0&startsec2=0&startunit2=a&ageat=01%2F01%2F2020&endhour2=0&endmin2=0&endsec2=0&endunit2=p&ctype=2&x=56&y=21#twodates

www.Manhattan2.org BuildingBus Development Guide 90

Chapter 34) Setting up the Analog Input Channels Apps

The DavePrj_BB project sets up 5 analog input channels with an ADC_MEASUREMENT
App. The 5 channels are named "ANALOG_IO_CH0", "ANALOG_IO_CH1", etc. These
names are referenced in the source code.

When the conversion of one A/D sample ends (0 to 4095 value), then
ADC_Complete_ISR_HigherPriority () ISR routine is executed. This has priority 53 (not 63)
since it needs a higher priority than the 10mSec interrupt system, otherwise it is blocked.

This project defines 5 analog input pins with ANALOG_IO Apps named "ANALOG_IO_0",
"ANALOG_IO_1", etc; and these are mapped to pins 14.0, 14.4, etc.

One needs to make sure the # of channels set up here is the same or more than the # of
sensors in the device. For example, if your device has 6 sensors connected to A/D
channels, you need to specify 6 A/D channels in the A/D App. For an example of A/D
channels being set up in a device, search "enum MY_Dev555_Sensor_ChannelIndex".

The HW Signal Connections dialog connects the channels to the pins (e.g. ANALOG_IO_0
to ANALOG_IO_CH0). One does this for all analog channels. Remember to click the SAVE
button after you set up a signal connection.

www.Manhattan2.org BuildingBus Development Guide 91

If you call Measure_One_ADC_Channel () and ask for 100uSec of integration (i.e. averaging of
multiple samples), and it takes 4uSec to do one A/D conversion, then Measure_... () will return
the average of 25 samples. This means the ADC_Complete… () ISR will be called 25 times before
the Measure_... () routine returns the average of 25 samples. The Measure_... () routine counts
the number of samples, and is not controlled by time. Subsequently, if a 200uSec interrupt
occurs during A/D conversion, it will still return the average of 25 samples. If you average 25
samples, for example, you reduce noise by the square root of 25 (i.e. 5-fold).

Measuring the Time it takes to Convert One Sample

A TIMER App named "TIMER_adc", and an INTERRUPT App named "INTERRUPT_adc" are
set up to execute an ISR routine after a programmed number of microseconds have
elapsed. This is used to measure the time that it takes to convert one A/D sample. We
measure this time once, when one first starts up (before enabling CANbus interrupts).
Then, we use this to calculate the number of samples to average given a microsecond
integration time. Parameter "weAreMeasuringAdcConversionTime" is set true while doing
this startup calibration procedure.

The TIMER_adc App is initially set up with a 10uSec time interval, yet this is re-
programmed later. This timer drives an interrupt, which drives an ISR named
Timer_adc_ISR (), which tells us the time has elapsed. The interrupt priority is set to 60,
since it needs to be higher than the 10mSec ISR at priority 63, else it is blocked (low
number is high priority).

www.Manhattan2.org BuildingBus Development Guide 92

The Platform2Go board physically connects processor IC pin 14.0 to its R8 potentiometer,
which means one needs to rotate the POT to see the voltage change. One cannot drive
this pin w/ an external signal since it conflicts with this POT.

Remember to click "Generate Code" after updating your Apps.

Hardware Dependencies are set up as follows:

Hardware Connections are shown below. The Green lines are automatically installed by
the DAVE system and the Blue lines are manually set up in the HW Signal Connections
dialog (e.g. 5 analog input channels connected to ADC_MEASUREMENT system).

For more information, search the DavePrj_BB project for ":Measure_One_ADC_Channel",
and search this document for "Programming the A/D".

www.Manhattan2.org BuildingBus Development Guide 93

www.Manhattan2.org BuildingBus Development Guide 94

Chapter 35) Setting up Digital I/O pin Apps

In the DavePrj_BB project, a digital i/o signal named "DIGITAL_IO_LED" is connected to the
LED light at Pin0.1 via the DIGITAL_IO App; and a digital i/o signal named "DIGITAL_IO_ChZ" is
connected to IC Pin #36 (P2.6).

One can connect these signals to physical IC pins via the Manual Pin Allocator or the Pin
Mapping panel.

A logic 1 turns the LED on via Push-Pull mode (3V / 680Ω = 5mA). This digital I/O is also
routed to Platform2Go X2 connector #13 (IC pin #1 routes to connector X2 pin #13).

The LED signal is controlled with 3 routines: BB_SetOutputLow_Dio_LED (),
BB_SetOutputHigh_Dio_LED (), and BB_ToggleOutput_Dio_LED ().

The ChZ digital output is controlled with 3 similar routines:
BB_SetOutputLow_Dio_ChZ (), BB_SetOutputHigh_Dio_ChZ (), and
BB_ToggleOutput_Dio_ChZ ().

Each of these takes about 125nSec on an Xmc4200.

For more information, search the DavePrj_BB project for "Dio_LED"; and
search this document for "Programming Digital I/O".

Remember to click "Generate Code" after updating your Apps.

www.Manhattan2.org BuildingBus Development Guide 95

Chapter 36) Setting up CANbus Apps

CAN_NODE and CAN_GLOBAL Apps

In the DavePrj_BB project we utilize a CAN_NODE and CAN_GLOBAL Apps to interface
with CANbus. One CAN_NODE instance is used for each CANbus cable. CAN_NODE_0
connects to upstream devices and is required (toward AMC). And the optional
CAN_NODE_1 connects to downstream devices (i.e. toward subnetwork). Some devices
and subnetwork devices only have one node, and are therefore never a bridge between
two CANbus cables.

GLOBAL_CAN App

We set up the Global CAN App as follows. This is used by the CAN_NODE Apps.

CANbus Node Apps

We set up two CAN_NODE Apps, one for each CANbus cable. The below pictures show
CAN_NODE_0. We set up CAN_NODE_1 in the same way.

Interrupt Apps

We set up four INTERRUPT Apps for each CANbus node (4 for node #0, 4 for node #1, 8
total):

www.Manhattan2.org BuildingBus Development Guide 96

We connect NODE sources to the Interrupts as shown below. We do this for both Node #0 and
Node #1.

Interrupt Priorities

We set up interrupt priorities as follows. Receive priority is highest since one needs to move
that data before it is overwritten.

www.Manhattan2.org BuildingBus Development Guide 97

Mapping IC Pins to CANbus Driver Node #0

The Platform2Go board routes Xmc4200 IC pins
P2.0 and P14.3 to CANbus transceiver CAN_TX and
CAN_RX respectively; therefore, this needs to be
set up in the Manual Pin Allocator, as shown below for Node #0. Also, as shown here, we
map pins P1.4 and P2.7 for Node #1.

www.Manhattan2.org BuildingBus Development Guide 98

Loop Back

If you select "Enable Loop Back Mode" in the CAN_NODE_x App
(route tmit to rcv internally for testing purposes), then the physical
tmit/rcv pins will not be shown in the Pin Allocation dialog (since
they are internally routed). After enabling loop back you can test
transmit to receive without two hardware devices; in theory. Yet
we don't see this and instead we see lack of ACK leading to Bus-Off,
as described above (receive sees nothing). In summary, loopback
does not seem to be helpful.

www.Manhattan2.org BuildingBus Development Guide 99

Chapter 37) Dedicated PCB's with Microcontroller IC's

XMC Link Debugger

If one wants to download/debug to a PCB other than an
existing reference board, then consider making use of a
downloader/debugger. An example is the Infineon XMC
Link (#KITXMCLINKSEGGERV1TOBO1) which supports
debugging from the DAVE environment. This is very
similar to the secondary Xmc4200 processor on the
Platform2Go board that manages debugging of the
primary Xmc4200. For details, see Datasheet, User's
Manual and Product page.

Alternatively, one might work with something like the Segger Edu Mini Debugger. For
details, see their User's Manual.

10pin Cortex Connector

The above devices attaches to a small 10-pin connector on one's PCB, an example of
which is shown below.

https://www.infineon.com/dgdl/Infineon-ProductBrief_XMC_Link_Isolated_Debug_Probe.pdf-PB-v01_00-EN.pdf?fileId=5546d462518ffd85015245043db55e93
https://www.infineon.com/dgdl/Infineon-XMC_Link_Board_Users_Manual.pdf-UM-v01_00-EN.pdf?fileId=5546d462518ffd850152451695e45edc
https://www.infineon.com/dgdl/Infineon-XMC_Link_Board_Users_Manual.pdf-UM-v01_00-EN.pdf?fileId=5546d462518ffd850152451695e45edc
https://www.digikey.com/en/products/detail/infineon-technologies/KITXMCLINKSEGGERV1TOBO1/5970448
https://www.digikey.com/en/products/detail/segger-microcontroller-systems/8.08.91-J-LINK-EDU-MINI/7387472
https://media.digikey.com/pdf/Data%20Sheets/Segger%20PDFs/J-Link,_J-Trace_User_Manual_Web.pdf

www.Manhattan2.org BuildingBus Development Guide 100

Schematics with Processor

There are many schematics that include microcontrollers. For example, the Platform2Go
manual contains a schematic that shows an Xmc4200 processor.

Another example is a 300W solar power DC-to-DC converter, shown below. For a list of
components in this schematic, search "XMC4200F" in ResearchNotes.xls.

https://www.infineon.com/dgdl/Infineon-XMC4200_Platform2Go-UserManual-v01_00-EN.pdf?fileId=5546d4626f229553016f8fca76c12c96
http://www.ma2life.org/doc/Common/Manhattan2_All_Research_Files/Manhattan2/Research_Lab/Glenn_Weinreb/m100_Schematics.pdf

www.Manhattan2.org BuildingBus Development Guide 101

www.Manhattan2.org BuildingBus Development Guide 102

Chapter 38) Working with the DAVE Help Viewer

Increasing Font Size

If the font is too small in the DAVE Help Viewer (which displays .chm files) click "CTRL" and
"+", as noted here.

Bypassing Security with DAVE Help XMC Lib Documentation

If an alert appears that says "File Download Security Warning,
ieframe.dll is trying to save http_404_webOC to your computer
and is blocked by security " while in the DAVE Help system, it
might be due to DAVE software not being properly installed into
the Windows ProgramFiles folder, and not having a secure area to
load .chm files. For details, click here.

One work-around is to open the
.chm file directly (w/o security) by
double-clicking on the file from the
Windows Desktop (and not going
through DAVE's Help system). Note
the pathname referenced in the
alert shown to the right. This is the
one you need to click from the
desktop.

Bypassing Security with Help for DAVE Apps

Another work-around is to locate the .chm file, select it, right-click Properties and click the
"Unblock" button, as noted here.

Notice there are version numbers in the listed DAVE Apps (e.g.
"4.0.12", shown to the right). To unblock, one needs to locate
these directories, drill down to the .chm file, right-click
properties, and then click Unblock. If you know you are going to use 5 to 10 of these, you
might want to unblock all at one time so you only need to figure this out once. To get to
the directories w/ these versions, refer to the below path:

https://superuser.com/questions/31609/increasing-font-size-on-windows-help-file-chm
https://www.drexplain.com/press/articles/error_accessing_and_displaying_chm_files_reasons_and_solutions/#:%7E:text=Solution%3A%20Run%20Windows%20Explorer%2C%20right,unblocked%2C%20the%20Unblock%20button%20disappears.
http://www.oscamnavy.com/UnblockingCHM.html

www.Manhattan2.org BuildingBus Development Guide 103

The below picture shows drilling down to .chm file:

Bypassing Security when downloading example .zip files from Infineon Website

One might incur security when downloading .zip files from the Infineon website. Adding
Infineon.com as a trusted URL might help. Alternatively, consider closing all your open
windows and trying a different browser (e.g. try Internet Explorer instead of Google
Chrome).

www.Manhattan2.org BuildingBus Development Guide 104

Chapter 39) Setting up a Real-Time Micriµm Control Panel

Micriµm software enables one to easily monitor changing real-time parameters within a
DAVE program. For example, your program might read the A/D converter once a second,
and Micrium can be set up to display, and plot, this value on your Windows computer. For
details on how this works, see Asrain Video #10.

https://www.youtube.com/watch?v=5gAL-7UFBBo

www.Manhattan2.org BuildingBus Development Guide 105

Chapter 40) Targeting Specific Hardware

Targeting Xmc4200 Platform2Go

The DavePrj_BB project targets (is built for) the
XMC4200-F64-256 processor (not F48). This IC has
64pins and 256kb of flash memory, and is the
processor on the Xmc4200 Platform2Go Board.

Migrating to a Different Processor

One can change the project to a different Xmc4200 processors by right-clicking on the
active project and then select: Dave Project Upgrade > Device Migration > new processor.
It will then make a copy of your project and placed the new project in the workspaces
directory (e.g. "..BB\DavePrj_BB\DavePrj_BB_Workspace\DavePrj_BB_XMC4200-
F64x256_0"). After it does this, you can exit DAVE and move this folder to a location of
your choosing. The files contained in the BB_Source_Code/ folder might be gone, since
those links have been broken. To place the BB files back into your project (i.e. update the
links), see the above "Importing Many Files" discussion. This shows how one can import
many directories and files with one operation, link to external files, and not copy source
code files.

After migration, your pin
assignments will probably
need to be reworked, since
the system has no way of
knowing which pin you want
to connect to.

One should also delete pre-
processor symbols that no
longer apply for the C
compiler, C++ compiler, and Assembler.

Remember to click "Generate Code" after updating your Apps.

https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc_plt2go_xmc4200/

	Overview
	Operating System for Device in a Building
	Xmc4200 Platform2Go Development Board
	See Also
	Chapter 1) The BuildingBus System
	Network Hierarchy
	Reliability, Revenue and Relevance
	Network Address
	Time and Design

	Chapter 2) Getting Started With the BuildingBus Source Code
	Downloading BB
	One Project Can Create Different Devices
	The DavePrj_BB Project
	Compiler Switches
	Getting Started with the DavePrj_BB Project
	BuildingBus_Development Visual Studio Project
	Windows Application Program
	Simulate 20 Devices in a System
	BB and MY
	BuildingBus Strategy
	Student Contribution

	Chapter 3) The DavePrj_BB Project
	Overview
	One Thread Takes Care of Most Business
	XMC Processor Code
	BB_EntireDevice C++ Class
	Global Pointer to Device (gDevP)
	A/D Analog Measurement
	Debugging via LogErrorCode ()

	Chapter 4) Simulating Multiple Devices
	Overview
	Creating Devices
	Creating CANbus Cables
	Simulating Multiple Devices
	Simulation Engine
	Running a Simulation

	Chapter 5) Data Capsules and Fields
	Overview
	ImmutableData, ImmutableStrings, and PortRegisters
	Internal Structure
	Reading and Writing Fields within a Portable Capsule
	Capsule Container Class
	Flt32 and Int64 Interface
	Flexibly Sized Signed Integer
	Iterating Through Ports, Capsules and Fields

	Chapter 6) Port Class
	Device Common Port
	Measurement System Port
	VariableControl Port

	Chapter 7) Transferring Data across the Network
	Working with Addresses
	Broadcast and Groups
	Each Device can Read/Write any Field, in any other Device, within the System
	Field Index
	Get Stream
	Message Builder
	Message Callbacks
	Message FIFO

	Chapter 8) Device Libraries
	Device Summary Libraries
	Building Libraries from Scratch
	Three types of libraries
	Locating Information in a Library
	Library Element Index
	Iterating Through Libraries
	Viewing Internal Library Structure with the Debugger
	Device Summary

	Chapter 9) Working with CANbus
	Routing of CANbus Messages through the System
	Working with Messages
	CANbus Communication
	Messages Packets
	CANbus Hardware Interface
	One Main Thread plus ISR's
	Mutex & Critical Sections
	CANbus Status
	CANbus Bus-Off
	Print to Console and Receive CANbus Message Do Not Mix
	Monitoring Processor Activity with an Oscilloscope via ChZ
	Monitoring CANbus with an Oscilloscope
	CANbus Testing

	Chapter 10) Major Function Handlers
	Overview
	Dispatching to a Handler
	Handlers Digest Information and Respond
	Conclusion

	Chapter 11) BuildingBus Machines
	Overview
	Execution Rate
	Execution Rates are not Accurate
	Machines are Smart
	We do not need to be Too Smart

	Chapter 12) TestSystem Machine
	Overview
	Read/Write TestRegister16
	Read Streams
	Wait for Response before Testing
	The Primary Device Controls the Test Target Device's Control Struct

	Chapter 13) Testing Multiple Devices in a System
	Overview
	Addressing, Cabling, Connectors, Devices and TestSystem Instances
	gDeviceMonitor
	Multiple Images
	Multiple Instances of TestSystem Class
	Working with Configurations
	Testing Comments
	Debugging CANbus

	Chapter 14) Software That Maintains One Device
	Review
	One Device
	Three Ports
	Note to Programmer
	R/W Field Intervention
	Defining Immutable String and Data Fields
	Capsule Internal Components
	Declare Supported Functions
	Port Class Constructor Methods
	MeasurementSys Sensor Measurement
	Device Type
	Product Type
	VariableControl Port
	MY Port Setup NCR .cpp Files
	Entire Device
	Conclusion

	Chapter 15) Creating a New Device
	Overview
	Copying an Existing Device
	Alternative to Copying Existing Files

	Chapter 16) Getting Started with DAVE Software
	Downloading DAVE Software
	Learning DAVE
	The DAVE Forum
	Example Projects
	Xmc4200 Reference Manual
	Helpful YouTube Channels
	References to Applications Notes

	Chapter 17) Programming Digital I/O Pins with DAVE
	Chapter 18) Programming the A/D Converter with DAVE
	Chapter 19) Programming Timers with DAVE
	Chapter 20) Programming Motors with DAVE
	Chapter 21) Programming CANbus with DAVE
	Chapter 22) Programming SPI Communication with DAVE
	Chapter 23) Programming DC and/or AC Power Conversion with DAVE
	Chapter 24) Programming LED Illumination Control with DAVE
	Chapter 25) Cabling Together Multiple Platform2Go via CANbus
	Cabling Together Two Xmc4200 Boards
	Attaching 2nd CANbus Cable to Xmc4200 PlatformToGo

	Chapter 26) Working with the DAVE Project File System
	Importing Many Files into a Dave Project
	Create Links
	Reset DAVE Workspace

	Chapter 27) Working with the DAVE Debugger
	Setting up the DAVE Debugger with a .elf Debug File
	Setting up a Debug Configuration
	Compile, Download, Run, Debug
	Connecting DAVE to the Segger JLinkGDBserverCL.exe file
	Free Debugger Has Limitations
	Suspend Wants Breakpoint at Start
	Viewing a Device
	Terminating the Debugger Session

	Chapter 28) Debug and Build Configurations
	Dave IDE Controlled Image vs Free Running Image
	Build Configuration and Debug Configuration
	Primary Device, Test Device #0, Test Device #1, etc
	Debug_DaveIDE, Debug_FreeRun and Release_FreeRun
	Preprocessor symbols (e.g. XMC_DEBUG_ENABLE, BB_DEBUG_ENABLE)
	Putting it all Together
	Printing to the DAVE Console Panel

	Chapter 29) Debugging Techniques
	LogErrorCode
	Blinking LED
	Identifying Processor Position after a Crash
	Detecting Stack Collision

	Chapter 30) Working with the DAVE Integrated Developer Environment (IDE)
	Stop Display Scaling with High Resolution 4K Monitors

	Chapter 31) Working with the DAVE Compiler and Linker
	Compiler Options
	C++ Compiler Version set to "2014 C++ w/ Gnu Extensions" (yet -std is much lower?)

	Chapter 32) Working with DAVE Apps
	Overview of Apps
	Interrupt Service Routines

	Chapter 33) Setting up 128uSec 64bit Counter and 10mSec ISR Apps
	RTC Real-Time Clock
	SYSTIMER Calls ISR Once Every 10mSec
	128uSec Clock Produced by PWM App
	Hardware Counter Counts 128uSec
	GET_DateTime_1uSecUnits_1Jan2020_int64()
	Testing

	Chapter 34) Setting up the Analog Input Channels Apps
	Measuring the Time it takes to Convert One Sample

	Chapter 35) Setting up Digital I/O pin Apps
	Chapter 36) Setting up CANbus Apps
	CAN_NODE and CAN_GLOBAL Apps
	GLOBAL_CAN App
	CANbus Node Apps
	Interrupt Apps
	Interrupt Priorities
	Mapping IC Pins to CANbus Driver Node #0
	Loop Back

	Chapter 37) Dedicated PCB's with Microcontroller IC's
	XMC Link Debugger
	10pin Cortex Connector
	Schematics with Processor

	Chapter 38) Working with the DAVE Help Viewer
	Increasing Font Size
	Bypassing Security with DAVE Help XMC Lib Documentation
	Bypassing Security with Help for DAVE Apps
	Bypassing Security when downloading example .zip files from Infineon Website

	Chapter 39) Setting up a Real-Time Micriµm Control Panel
	Chapter 40) Targeting Specific Hardware
	Targeting Xmc4200 Platform2Go
	Migrating to a Different Processor

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

